
Optimal Row-Column Designs in High-Throughput Screening Experiments

Saturated row-column designs are studied to eliminate row and column effects in

primary high-throughput screening experiments. All paired comparisons of treat-

ments in the designs recommended are estimable within each microplate in spite of

the existence of row and column effects. The (M,S)-criterion is used to select op-

timal and eliminate inefficient designs. It turns out that all (M,S)-optimal designs

are binary, i.e., no treatments appear twice in any row or column. Optimal designs

are not unique with respect to design isomorphism. A series of (M,S)-optimal de-

signs are constructed and all paired comparisons of treatments in the constructed

designs are estimable regardless of the two-way heterogeneity. An (M,S)-optimal

design for 8 × 12 microplates is provided and optimal designs of other dimensions

can be constructed systematically.

key words: Binary designs; (M,S)-optimality; Row-column designs; Saturated

designs.

1. INTRODUCTION

High-throughput screening (HTS) is a large-scale process that screens hundreds of

thousands to millions of compounds in order to identify pharmacologically active com-

pounds. In an HTS process compounds are usually tested for binding activity or biologi-

cal activity against target molecules. A key piece of HTS equipment is the microplate: a

small container that features a grid of small, open divots called wells. Figure 1 presents

96 (8 × 12)-well microplates commonly used in HTS practices where solid and empty

circles are wells. Other HTS microplates such as 384 (16× 24)-well, 1536 (32× 48)-well,

and 3456 (48×72)-well ones are also used in HTS experiments. Even though the plating

format and the number of compounds per plate vary, primary HTS operations typically

measure a single observation from each compound incubated in a well of rectangular

microplates.
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Figure 1. Current HTS Designs

There are many statistical challenges in data preprocessing and active-compound

(also called hits) identification in primary HTS. Malo et al. (2006) reviewed statistical

issues in the current HTS practice. Random and systematic errors due to aging, reagent

evaporation, cell decay, or liquid handling, etc. contaminate HTS data and bias hit selec-

tions in almost every HTS experiment. Often, systematic errors result in spatial effects

or row and column effects on microplates. That is, observations from the same compound

may vary systematically as well as randomly from well to well on the microplate.

Figure 2 shows the heat map of data from an HTS experiment. In this experiment,

one control compound is incubated to all 384 wells. Different levels of activity are

observed from wells in different rows and columns. An analysis of variance shows row

and column effects are statistically significant (α = 0.05). Brideau et al. (2003) studied

more than 1, 000 384-well microplates and discovered that values situated in row one

were, on average, 14% lower than those in row 16.

Due to the tremendous impact of row and column effects on false-positive and false-

negative discovery rates in HTS, experimental remedies have been proposed to eliminate

row and column effects in HTS. For instance, Lundholt, Scudder, and Pagliaro (2003)

used a pre-incubation technique to reduce spatial effects in cell-based assays. However,

experimental remedies usually increase the cost of inventory such as time and materials

in HTS. On the other hand, analytic methods using experimental design are more cost-

effective. Figure 1 displays three commonly used designs in HTS experimentation where

solid circles contain controls and empty circles have compounds to be screened. As is

shown later, not all paired comparisons of treatments in such designs are estimable and

usually these designs are unable to decompose treatment effects from the contamination

of row and column effects.

Arranging compounds or treatments on microplates to eliminate spatial effects is
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Figure 2: Row and Column Effects

the same as constructing row-column designs to eliminate two-way heterogeneity. Latin

squares, Youden squares and their generalizations are classic row-column designs with

various optimalities (Cheng, 1981, Kiefer, 1975). However, these classic designs usually

have strictly combinatorial constraints on numbers of rows, columns, and treatments.

For example, numbers of rows, columns as well as treatments have to be equal in Latin

square designs; numbers of columns and treatments are the same in Youden squares,

etc. Because of such constraints, classic designs with small number of treatments are

not applicable to HTS experiments in drug discovery (Hüser et al., 2006) and microarray

experiments (Kerr, 2003), etc. HTS experiments are often characterized by a shortage

of experimental materials to evaluate hundreds of thousands of compounds, or genes

(called treatments, hereafter). Moreover, scientists in HTS are primarily interested in

the selection and identification of superior treatments for further improvement as opposed

to precise estimation or prediction of their effects. Therefore, multiple replications of all

treatments are neither feasible nor cost-effective.

Two computer packages CycDesigN (Whitaker et al., 2008) and Gendex DOE Toolkit

(Nguyen, 1997) can generate row-column designs of any dimensions with all treatments

equally replicated and occurring at least twice. Such designs are not popular in the

early stage of selection processes (Lin and Poushinsky, 1983) because they can study, at
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most, N/2 treatments, where N is the number of wells. A class of row-column designs

in which no constraints are imposed on numbers of rows and columns and the majority

of treatments are not replicated is studied in this paper.

There are many criteria in selecting row-column designs. A design whose geometric

mean of canonical efficiency factors is at least as large as that of any other design is D-

optimal. AlthoughD-optimality has proved to be useful in the context of linear regression

analysis, it has a less meaningful interpretation in selecting row-column designs (John

and Williams, 1995, p.32). E-optimality (Jacroux, 1990) is also a criterion. A design

whose smallest canonical efficiency factor is at least as large as that of any other design

is E-optimal. A-optimal designs have the largest harmonic mean of canonical efficiency

factors. However, A-optimal row-column designs are intractable to find when the number

of experimental units is not a multiple of the number of treatments. Sonnemann (1985)

studied A-optimal row-column designs for two treatments. Morgan and Parvu (2007)

solved the A-optimality problem for three treatments.

The (M,S)-optimality criterion is used in this paper. A design is said to be (M,S)-

optimal among a class of designs if it has the maximum trace of the information matrix

and has the minimum trace of the information matrix squared over all designs with the

maximum trace. The rationale of using the (M,S)-criterion is as follows. First, it is desir-

able in HTS experimentation to estimate all paired comparisons with the same precision

and it is known that all paired comparisons can be estimated with the same precision

if and only if all nonzero eigenvalues of the information matrix are equal (Raghavarao,

1971, p.52). Let λi, for i = 1, 2, · · · , n, be the nonzero eigenvalues of the information

matrix. Since
n
∑

i=1

(λi − λ̄)2 =
n
∑

i=1

λ2 − (
n
∑

i=1

λ)2/n,
n
∑

i=1

λ2 is the trace of the information

matrix squared, and
n
∑

i=1

λ is the trace of the information matrix, (M,S)-optimal designs

have the least variable eigenvalues. Second, the (M,S)-criterion has huge computational

advantages over other criteria. Such advantages have been popularly adopted in gener-

ating A- and E-optimal row-column designs by computers (Nguyen, 1997). Although

(M,S)-optimal designs are not A- and E-optimal, they tend to have better A- and E-

criterion performance (Cheng, 1978). Third, the (M,S)-criterion provides great insight

in searching for A- and E-optimal designs because eigenvalues bounds of the information

matrix can be obtained through its trace (Wolkowicz and Styan, 1980).

The paper is arranged as follows. Section 2 introduces the class of row-column designs

and some preliminaries. Main results are presented in Section 3 and concluding remarks
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are given in Section 4.

2. SATURATED ROW-COLUMN DESIGNS

In an HTS experiment, wells in the microplate are experimental units and they are

grouped by two blocking factors with one factor representing the rows of the microplate

and the other representing the columns. The third factor of the experiment is treat-

ments. An appropriate row-column design for the experiment increases the accuracy of

estimating treatment comparisons by eliminating row and column effects.

In this section, a class of saturated row-column designs is introduced. Consider

allocating v = (b− 1)(k− 1) + 1 treatments, T1, T2, . . . , Tv, to the bk experimental units

in b(≥ 3) rows and k(≥ 3) columns. The class of designs, say, D, studied in this paper

is constructed as follows.

Table 1: Saturated row-column designs

Row\Column 1 2 3 · · · k − 1 k
1 T1 T2 T3 · · · Tk−1 η1

2 Tk Tk+1 Tk+2 · · · T2(k−1) η2

3 T2k−1 T2k T2k+1 · · · T3(k−1) η3
...

...
...

...
...

...
...

b− 1 T(b−2)k−(b−3) T(b−2)k−(b−4) T(b−2)k−(b−5) · · · Tv−1 ηb−1

b θ1 θ2 θ3 · · · θk−1 Tv

a. Treatment T(i−1)(k−1)+j is arranged in the (i, j)th cell of the design for i = 1, 2, · · · , b−

1, j = 1, 2, · · · , and k − 1.

b. Treatment Tv is placed at the (b, k)th cell of the design.

c. For 1 ≤ i ≤ b − 1, ηi is any treatment in {T1, T2, · · · , Tv} that has not appeared in

the ith row.

d. For 1 ≤ j ≤ k − 1, θj is any treatment in {T1, T2, · · · , Tv} other than those that are

already in the jth column.

The construction of designs in Table 1 has great feasibility in HTS experimentation

where only treatments in the bth row and kth column are restricted, replicated, and all

others are free of restrictions and non-repeated. There are no constraints on b and k.
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Such designs were first proposed in Qu et al.. (2010). However, only squared (b = k)

(M,S)-optimal designs are studied there. The results in this paper hold for all b and k.

There is no loss of generality of taking b ≤ k, since the design can always be rotated by

90o to achieve this. It is also important to note that class D studied in this paper is a

proper subclass of saturated row-column designs of b by k.

The following discussion is devoted to notations of row-column designs. More details

can be found in John and Williams (1995, Chap. 5). Let Yij be the observation from the

(i, j)th cell, i = 1, 2, . . . , b, and j = 1, 2, . . . , k. The following additive fixed-effect model

is considered in this paper.

Yij = µ+ αi + βj + τℓ + ǫij, (1)

where µ is the general mean, αi is the effect of the ith row, βj is the effect of the jth

column, τℓ is the effect of treatment Tℓ if Tℓ appears in the (i, j)th cell, ℓ = 1, 2, · · · ,

v, and ǫij’s are independently and identically distributed random errors with mean zero

and standard deviation σ.

Since treatment, row, and column effects in an HTS experiment form a three-way

classification, equation (1) is the simplest linear model that separates treatment effects

from random errors as well as row and column effects. However, this model has not

been used for hit selection in the HTS literature. Currently, most selection procedures

are ad hoc. Few procedures are able to de-alias treatment effects from the contami-

nation of spatial effects and random errors. The popular B-score method (Brideau et

al., 2003) eliminates spatial effects by estimating such effects through Tukey’s median

polish procedure and subtracting them from corresponding observations. Such elimina-

tion does reduce the influence of spatial effects but cannot separate treatment effects

from random errors. In fact, the residuals used in the B-score procedure are sums of

treatment effects and random errors. The design of HTS experiments is another reason

that model (1) is not applied. In order to estimate treatment effects in model (1), all

paired comparisons of treatments must be estimable in the row-column design, i.e., the

design is treatment-connected. As is discussed below, most HTS designs in the literature

are not treatment-connected. Zhang (2008) proposed a series of plate designs (e.g., C1

to C5) by arranging controls in certain patterns to offset row-column effects. It can be

shown that designs C1 to C5 are not treatment-connected. Therefore, linear model (1)

is not applicable to analyze data from those designs. Next, we introduce the concept of

information matrix to describe the treatment-connectedness of a row-column design.
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The information matrix Cd of a row-column design d has the following form under

model (1)

Cd = R−
1

k
N1N

′
1 −

1

b
N2N

′
2 +

1

bk
rr′, (2)

or, equivalently,

bkCd = bkR− bN1N
′
1 − kN2N

′
2 + rr′, (3)

where r′ = (r1, . . . , rv) is the treatment replicate vector, R = diag(r1, r2, . . . , rv) is a

diagonal matrix with entries r1, . . . , rv, N1 = (n
(r)
ij ) of order v× b denotes the treatment-

row incidence matrix, i.e., n
(r)
ij is the number of times treatment Ti appears in the jth

row, N2 = (n
(c)
ij ) of order v× k is the treatment-column incidence matrix, and n

(c)
ij is the

number of times treatment Ti occurs in the jth column. If all entries in N1 and N2 are

either 0 or 1, design d is binary.

It is known that a row-column design is treatment-connected, i.e., all paired com-

parisons of treatments are estimable, if and only if the rank of Cd is v − 1. If all solid

circles in design (a) are controls, there are 81 distinct treatments in each microplate and

a straightforward QR decomposition shows that rank(Cd) = 70 which is smaller than 80

(i.e., 81 − 1). Therefore, design (a) is not treatment-connected and not all paired com-

parisons of treatments are estimable. Similarly, design (b) is not treatment-connected

either. If all solid circles in design (c) are controls rank(Cd) = 56 and the design is

treatment-connected. As is pointed out next, the maximum number of treatments that

can be arranged in an 8 × 12 treatment-connected design is 78.

Since there are bk observations in the design of Table 1 for each b and k, the total

number of degrees of freedom is bk − 1. According to equation (1), b − 1 and k − 1

degrees of freedom are used to estimate row and column effects, respectively. There are

(b− 1)(k − 1) = v − 1 degrees of freedom left for treatment effects. Thus, the design is

saturated because v = bk − b − k + 2 is the maximum number of treatments that can

be arranged in a row-column layout to eliminate non-negligible two-way heterogeneity.

There are no degrees of freedom left to estimate the variance of the random error σ2.

The analysis of data from a design in Table 1 using model (1) is challenging due to

the saturation and nonorthogonality of the design. Though many analysis methods have

been proposed for orthogonal, saturated designs (Hamada and Balakrishnan, 1998), only

a few articles in the literature deal with nonorthogonal, saturated designs. Two methods

in Kunert (1997) and Wang and Voss (2001) are good candidates for hit selection because

effect sparsity, one of the key features of HTS, is used to estimate the variance of the

random error. The LASSO (least absolute shrinkage and selection operator) method
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(Tibshirani, 1996) can also be applied. We are currently assessing the performance of

these procedures. Another challenge of linear regression using model (1) is that random

errors in HTS experiments are usually nonnormal and heteroscedastic.

3. MAIN RESULTS

In this section, a general expression of tr(Cd) for design d ∈ D is given. The general

formula is then used to explore the specific structure of (M,S)-optimal designs in D.

Proposition 1 provides an explicit formula of tr(Cd) in terms of the occurrences of treat-

ments in the bth row and kth column. Proposition 2 gives an upper bound of tr(Cd).

The proofs of Propositions 1 and 2 are given in Qu et al.. (2010).

Proposition 1. For any design d ∈ D,

bktr(Cd) = bkv − b

v
∑

i=1

n
(r)
ib

2
− k

v
∑

j=1

n
(c)
jk

2
+

v
∑

l=1

r2
l , (4)

where n
(r)
ib is the number of times that treatment Ti appears in the bth row, n

(c)
jk is the

number of times that treatment Tj appears in the kth column and rl is the replicate

number of treatment Tl. If d is binary, then bktr(Cd) = bk(v − 2) + 1 +
∑v−1

l=1 r
2
l .

Proposition 2 next shows that designs that attain the maximum trace of information

matrices among all designs in D are binary. Therefore, (M,S)-optimal binary designs in

D are also (M,S)-optimal in D.

Proposition 2. For any design d ∈ D, let n
(r)
ib be the number of times that treatment Ti

appears in the bth row and n
(c)
jk be the number of times that treatment Tj appears in the

kth column. Then

bktr(Cd) = bk(v+1)+b+k+2−(b−1)
v

∑

i=1

n
(r)
ib

2
−(k−1)

v
∑

j=1

n
(c)
jk

2
+2

v
∑

i=1

n
(r)
ib n

(c)
ik −4n

(r)
vb −4n

(c)
vk

(5)

and

tr(Cd) ≤ bk − b− k + 1 +
2|b− k| + 6min(b, k) − 6

bk
. (6)

The upper bound of tr(Cd) in inequality (6) is attained if and only if n
(r)
ib = 0 or 1(1 ≤

i ≤ v), n
(c)
jk = 0 or 1(1 ≤ j ≤ v), n

(r)
vb = n

(c)
vk = 1, and n

(r)
ib − n

(c)
ik = 0 or 1 when k ≥ b or

n
(c)
ik − n

(r)
ib = 0 or 1 when b ≥ k.
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Proposition 2 also highlights the structure of design d ∈ D whose information matrix

attains the maximum trace. For k ≥ b, it is observed that treatments appearing in

the kth column must also appear in the bth row in order to maximize the trace of

the information matrix. When k ≥ b, proposition 2 implies that a design d with the

maximum trace of information matrix has b− 1 treatments appearing three times, k− b

ones appearing twice, and bk − 2k − b+ 3 appearing once.

Without loss of generality, we assume b ≤ k throughout the following discussion.

Theorem 1 provides the lower bound of tr(C2
d) for any designs in D that attain the

maximum tr(Cd) and its proof is given in the Appendix.

Theorem 1. Let 4 ≤ b ≤ k ≤ 2b− 1. For any design d ∈ D with the maximum trace of

information matrix

b2k2tr(C2
d) ≥ b3k3 + b2k3 + 3b3k2 − 17b2k2 − 6b3k − 4bk3 (7)

+ 40b2k + 34bk2 − 2b3 − 2k3 − 10k2 − 50bk − 24b+ 36.

We now present an algorithm for constructing designs that attain the lower bound of

inequality (7). For b ≥ 4 and k = b+s where 0 ≤ s ≤ b−1, let 1, 2, · · · , v = bk−b−k+2

represent treatments in the design.

Construction Algorithm 1

1. Treatment (i−1)(k−1)+j is in row i and column j for i = 1, 2, · · · , b−1, j = 1, 2, · · · ,

and k − 1, respectively;

2. Treatment v is in row b and column k;

3. Treatments in rows 1 to b− 1 of column k are k + 1, 2k + 1, · · · , (b− 2)k + 1, and

1, respectively;

4. Treatments k+ 1, 2k+ 1, · · · , (b− s− 1)k+ 1 are in columns 1 to b− s− 1 of row b;

those in columns b− s to b− 1 of row b are treatments (b− s− 1)(k− 2)+2(b− 1),

(b− s)(k− 2) + 2(b− 1), · · · , (b− 2)(k− 2) + 2(b− 1); those in columns b to k− 1

of row b are treatments 1, (b− 2)k + 1, · · · , and (b− s)k + 1, respectively.

Theorem 2 shows that designs from Construction Algorithm 1 are treatment-connected.

Its proof is given in the Appendix.
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Theorem 2. For b ≥ 4 and k = b + s where 0 ≤ s ≤ b − 1, Construction Algorithm 1

produces designs that are (M,S)-optimal and treatment-connected.

Three important questions regarding (M,S)-optimal designs need to be addressed.

First, are (M,S)-optimal designs in D unique with respect to design isomorphism? Two

row-column designs are isomorphic if one can be obtained from the other by permut-

ing rows or columns or relabeling treatments. Second, are all (M,S)-optimal designs

treatment-connected? Third, are all treatment-connected, (M,S)-optimal designs iso-

morphic? Answers to these questions are negative.

Table 2 lists three (M,S)-optimal designs of 6× 9 with 41 treatments labeled 1 to 41.

Designs 1 and 2 are treatment-connected since their information matrices have ranks of

40. However, information matrices of designs 1 and 2 have different eigenvalues. Recall

that information matrices of isomorphic designs have the same eigenvalues. It follows

that designs 1 and 2 are not isomorphic. Design 3 is not treatment-connected because

the rank of its information matrix is 39 instead of 40. Therefore, (M,S)-optimal designs

are neither unique nor treatment-connected. There are nonisomorphic (M,S)-optimal

designs that are treatment-connected.

Table 2: (M,S)-Optimal Designs of 6 × 9
Design 1

1 2 3 4 5 6 7 8 10
9 10 11 12 13 14 15 16 19
17 18 19 20 21 22 23 24 28
25 26 27 28 29 30 31 32 37
33 34 35 36 37 38 39 40 1
10 19 24 31 38 1 37 28 41

Design 2
1 2 3 4 5 6 7 8 10
9 10 11 12 13 14 15 16 19
17 18 19 20 21 22 23 24 28
25 26 27 28 29 30 31 32 37
33 34 35 36 37 38 39 40 1
10 19 24 31 38 28 1 37 41

Design 3
1 2 3 4 5 6 7 8 10
9 10 11 12 13 14 15 16 19
17 18 19 20 21 22 23 24 28
25 26 27 28 29 30 31 32 37
33 34 35 36 37 38 39 40 1
19 31 38 10 24 1 37 28 41

When b = k, Theorem 3 shows that designs in Table 3 are (M,S)-optimal and

treatment-connected. This result was proved in Qu and Ogunyemi (2009). We present

a different but simpler proof in the Appendix.
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Table 3: (M,S)-optimal square designs
1 2 3 · · · b − 2 b − 1 b + 1
b b + 1 b + 2 · · · (b − 1) + (b − 2) 2(b − 1) 2b + 1

2b − 1 2b 2b + 1 · · · 2(b − 1) + (b − 2) 3(b − 1) 3b + 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

(b − 3)(b − 1) + 1 (b − 3)(b − 1) + 2 (b − 3)(b − 1) + 3 · · · (b − 3)(b − 1) + (b − 2) (b − 2)(b − 1) (b − 1)2

(b − 2)(b − 1) + 1 (b − 2)(b − 1) + 2 (b − 2)(b − 1) + 3 · · · (b − 2)(b − 1) + (b − 2) (b − 1)2 1
b + 1 2b + 1 3b + 1 · · · (b − 1)2 1 (b − 1)2 + 1

Theorem 3. When b = k ≥ 4, designs in Table 3 are (M,S)-optimal and treatment-

connected.

Theorem 1 shows the lower bound of tr(C2
d) when 4 ≤ b ≤ k ≤ 2b − 1. Theorem 4

next provides the lower bounds in more general cases. Again, its proof is presented in

the Appendix.

Theorem 4. Let b ≥ 4. For t(b− 1) + 1 < k ≤ (t + 1)(b− 1) + 1, t ≥ 2 and any design

d ∈ D that maximizes the trace of the information matrix

b2k2tr(C2
d) ≥ b3k3 + 3b3k2 + b2k3 − 6b3k − 17b2k2 − 4bk3 + (36 + 4t)b2k (8)

+ 26bk2 + (2 − 2t− 2t2)b3 + 2k3 − (38 + 4t)bk

− (4 − 4t2)b2 − 10k2 − (24 − 2t+ 2t2)b− 4k + 36.

For b ≥ 4 and k = t(b − 1) + s + 1 where 0 ≤ s ≤ b − 1 and t ≥ 2, Construction

Algorithm 2 next provides designs that attain the lower bound of inequality (8) where

1, 2, · · · , v − 1 and v = bk − b− k + 2 are treatments.

Construction Algorithm 2

1. Treatment (i−1)(k−1)+j is in row i and column j for i = 1, 2, · · · , b−1, j = 1, 2, · · · ,

and k − 1, respectively;

2. Treatment v is in row b and column k;

3. Treatments in rows 1 to b− 1 of column k are k + 1, 2k + 1, · · · , (b− 2)k + 1, and

1, respectively;

4. If t is even, treatments in columns 1 to (t− 1)(b− 1) of row b are 2(b− 1), (k− 1) +

(b − 1) + (b − 2), · · · , (b − 3)(k − 1) + (b − 1) + 2, (b − 2)(k − 1) + (b − 1) + 1;

(b− 2)(k − 1) + 3(b− 1), (b− 3)(k − 1) + 3(b− 1) − 1, · · · , (k − 1) + 2(b− 1) + 2,

11



2(b−1)+1; · · · ; t(b−1), (k−1)+ t(b−1)−1, · · · , (b−3)(k−1)+(t−1)(b−1)+2,

and (b−2)(k−1)+(t−1)(b−1)+1; those in columns (t−1)(b−1)+1 to t(b−1)−s

of row b are 1, (b− 2)k + 1, · · · , (s+ 1)k + 1; those in columns t(b− 1) − s+ 1 to

t(b− 1) of row b are (s− 1)(k − 1) + t(b− 1) + s, (s− 2)(k− 1) + t(b− 1) + s− 1,

· · · , (k − 1) + t(b− 1) + 2, and t(b− 1) + 1; those in columns t(b− 1) + 1 to k − 1

of row b are k + 1, 2k + 1, · · · , sk + 1 respectively;

5. If t is odd, treatments in columns 1 to (t − 1)(b − 1) of row b are 2(b − 1), (k −

1) + 2(b − 1) − 1, · · · , (b − 3)(k − 1) + (b − 1) + 2, (b − 2)(k − 1) + (b − 1) + 1;

(b−2)(k−1)+3(b−1), (b−3)(k−1)+3(b−1)−1, · · · , (k−1)+2(b−1)+2, 2(b−1)+1;

· · · ; (b−2)(k−1)+t(b−1), (b−3)(k−1)+t(b−1)−1, · · · , (k−1)+(t−1)(b−1)+2,

and (t− 1)(b− 1) + 1; those in columns (t− 1)(b− 1) + 1 to t(b− 1) − s of row b

are k+ 1, 2k+ 1, · · · , (b− 1− s)k+ 1; those in columns t(b− 1)− s+ 1 to t(b− 1)

of row b are (b− s− 1)(k − 1) + t(b− 1) + s, (b− s)(k − 1) + t(b− 1) + s− 1, · · · ,

(b− 2)(k − 1) + t(b− 1) + 1; those in columns t(b− 1) + 1 to k − 1 of row b are 1,

(b− 2)k + 1, · · · , (b− s)k + 1, respectively.

Theorem 5 shows that designs constructed by Construction Algorithm 2 are treatment-

connected. Since its proof follows exactly the same steps as that of Theorem 2, it is

omitted.

Theorem 5. For b ≥ 4 and k = t(b−1)+s+1 where 1 ≤ s ≤ b−1 and t ≥ 2, Construction

Algorithm 2 produces designs that are (M,S)-optimal and treatment-connected.

Note that, when b = 3, there is a 4b2 increase in b2tr(N1N
′
1N1N

′
1). We have

Theorem 6. For b = 3, 2t + 1 < k ≤ 2t + 3, t ≥ 2, and any design d in D with the

maximum trace of information matrix

b2k2tr(C2
d) ≥ b3k3 + 3b3k2 + b2k3 − 6b3k − 17b2k2 − 4bk3 + (36 + 4t)b2k

+ 26bk2 + (2 − 2t− 2t2)b3 + 2k3 − (38 + 4t)bk

+ 4t2b2 − 10k2 − (24 − 2t+ 2t2)b− 4k + 36.

When 3 = b ≤ k ≤ 5, Table 4 shows the unique (M,S)-optimal designs of 3 × 3,

3× 4, and 3× 5 with respect to design isomorphism, respectively. All designs in Table 4

are treatment-connected. The general construction of (M,S)-optimal designs of 3× k for

k ≥ 6 follows Theorem 5 and it can be shown that neither (M,S)-optimal designs are

unique nor all (M,S)-optimal designs are treatment-connected for b = 3.
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Table 4: (M,S)-optimal designs of 3 × 3, 3 × 4, and 3 × 5

3 × 3 3 × 4 3 × 5

1 2 4 1 2 3 5 1 2 3 4 6

3 4 1 4 5 6 1 5 6 7 8 1

4 1 5 5 6 1 7 4 7 1 6 9

Agrawal (1969a, 1969b) constructed several row-column designs in which the num-

ber of treatments is larger than both the number of rows and the number of columns.

However, compared to the saturated design in this paper, the number of treatments in

an Agrawal design is much smaller and there are restrictions on the number of rows and

columns as well.

Table 5 compares the proposed (M,S)-optimal designs with Agrawal designs and Cy-

cDesigN designs (generated by the demonstration version of CycDesigN 3.0 with the

maximum number of treatments) in terms of the number of replicated treatments (NR),

the number of unreplicated treatments (NU), the average variance of estimates of dif-

ferences between any two treatments (AV×σ2), the average variance of estimates of

differences between two unreplicated treatments (AVUU×σ2), the average variance of

estimates of differences between one unreplicated treatment and one replicated treat-

ment (AVUR×σ2), and the average variance of estimates of differences between two

replicated treatments (AVRR×σ2). It can be seen that the (M,S)-optimal designs have

much more treatments than others. For example, the (M,S)-optimal design of 6 × 25

has 121 treatments of which 97 are unreplicated and 24 are replicated while the maxi-

mum number of treatments in the CycDesigN design is 75 and the Agrawal design has

only 30 treatments. The large ratio of the number of unreplicated treatments to that of

replicated ones is an attractive feature in the early stage of HTS experiments.

It is observed that (M,S)-optimal designs have the highest AVs. For example, the AV

of the (M,S)-optimal design of 6 × 25 is higher than those of CycDesigN and Agrawal

designs by factors of 3 and 11, respectively. This is the trade-off between the number

of treatments and the estimate precision. Saturated row-column designs are favored in

situations when experimenters focus on screening rather than optimizing and therefore,

the number of treatments in the design outweigh the precision of estimation. Moreover,

precise estimates can also be obtained by one or two replicates of proposed (M,S)-optimal

designs in HTS when the standard deviation of the random error σ is small.
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Table 5: Variances of paired comparisons in row-column designs
Design Agrawal CycDesigN (M,S)-optimal

b × k NR AV NR AV NR NU AV AVUU AVUR AVRR

4 × 9 12 0.85 18 1.56 8 17 4.01 4.99 3.43 2.07

5 × 6 10 0.82 15 1.45 5 16 3.96 4.81 3.02 1.30

5 × 16 20 0.61 40 1.49 15 46 4.96 5.64 4.25 3.01

6 × 10 15 0.58 30 1.39 9 37 4.41 5.05 3.42 1.87

6 × 25 30 0.47 75 1.42 24 97 5.82 6.34 5.03 3.84

7 × 8 14 0.59 28 1.36 7 36 4.44 5.01 3.24 1.48

9 × 10 18 0.45 45 1.31 9 64 4.75 5.20 3.40 1.60

11 × 12 22 0.37 66 1.27 11 100 4.97 5.33 3.51 1.69

4. CONCLUSIONS

We have studied a class of saturated row-column designs. These designs use the min-

imum number of experimental units to compare the maximum number of treatments in a

row-column layout. All (M,S)-optimal designs in the class are binary, i.e., no treatments

are repeated in any row or column. Therefore, (M,S)-optimal binary designs are also

(M,S)-optimal in D. For any b and k, treatment-connected (M,S)-optimal designs can be

constructed systematically by Construction Algorithms 1 and 2. (M,S)-optimal designs

are not unique with respect to design isomorphism. Some (M,S)-optimal designs are not

even treatment-connected.

The designs considered in this paper are not equi-replicated. As is pointed out by

Morgan and Parvu (2007), finding A- and E-optimal row-column designs with a large

number of non-replicated treatments is mathematically intractable at the current stage.

When it is not feasible to find A- and E-optimal designs, are (M,S)-optimal designs

constructed in this paper good surrogates? In other words, do (M,S)-optimal designs

also have high A- and E-efficiencies? Since it is insurmountable to answer the question

for large b and k, Table 6 lists A- and E-optimal designs of 4× 4 and 4× 5 in D, where

A-efficiency (A-eff) is the harmonic mean of nonzero eigenvalues and E-efficiency (E-eff)

is the minimum nonzero eigenvalue of the information matrix Cd with respect to R,

respectively (John and Williams, 1995, pp. 39).

Table 6 shows that A-optimal designs are not necessarily E-optimal in general and

vice versa. The complete search shows that A-optimal designs of 4×4 are also E-optimal

but some E-optimal designs are not A-optimal. All (M,S)-optimal designs of 4 × 4 and

4× 5 are not A- and E-optimal and vice versa. In fact, all A- and E-optimal designs are

not treatment-connected while all (M,S)-optimal designs are treatment-connected. The
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Table 6: Optimal designs of 4 × 4 and 4 × 5
Connected, A-

A-optimal E-optimal and E-optimal (M,S)-optimal

4 × 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 5

4 5 6 1 4 5 6 1 4 5 6 8 4 5 6 9

7 8 9 10 7 8 9 2 7 8 9 3 7 8 9 1

10 9 8 10 6 9 1 10 5 9 1 10 5 9 1 10

A-eff 0.7368 0.6667 0.6000 0.4884

E-eff 0.5000 0.5000 0.5000 0.2500

4 × 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 6

5 6 7 8 10 5 6 7 8 1 5 6 7 8 10 5 6 7 8 11

9 10 11 12 13 9 10 11 12 13 9 10 11 12 3 9 10 11 12 1

2 13 8 7 13 10 13 12 11 13 6 11 4 1 13 6 11 12 1 13

A-eff 0.6782 0.6780 0.5471 0.4721

E-eff 0.3041 0.4000 0.2500 0.1836

connected A- and E-optimal designs in Table 6 have the highest A- and E-efficiencies

among all treatment-connected designs. The (M,S)-optimal designs in Table 6 are con-

structed by Construction Algorithm 1 and have the highest A- and E-efficiencies among

all treatment-connected, (M,S)-optimal designs of 4 × 4 and 4 × 5, respectively. The

high ratios of A-efficiencies of treatment-connected, (M,S)-optimal designs to those of

treatment-connected, A-optimal designs, 0.814 for 4×4 and 0.8629 for 4×5, demonstrate

that (M,S)-optimal designs constructed in this paper are good surrogates of A-optimal

designs. It is also true that all (M,S)-optimal designs of 4 × 6 are treatment-connected

and the design constructed by Construction Algorithm 1 is A- and E-optimal of all

(M,S)-optimal designs. For b ≥ 5 or k ≥ 7, there are (M,S)-optimal designs that have

higher A- and E-efficiencies than those from Construction Algorithms 1 and 2. We are

studying A- and E-optimal designs among (M,S)-optimal designs of b× k.

Unlike most row-column designs in the literature where many combinatorial restric-

tions have been put on numbers of rows and columns, designs considered in this paper

can be constructed for any dimensions. This is extremely important to HTS practice

because microplates of various dimensions have been manufactured and used in HTS ex-

perimentation. Table 7 presents a treatment-connected, (M,S)-optimal design of 8 × 12

for 96-well microplates. (M,S)-optimal row-column designs for 16 × 24, 32 × 48, and

48 × 72 microplates can be constructed accordingly.
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Table 7: An (M,S)-optimal design of 8 × 12
1 2 3 4 5 6 7 8 9 10 11 13
12 13 14 15 16 17 18 19 20 21 22 25
23 24 25 26 27 28 29 30 31 32 33 37
34 35 36 37 38 39 40 41 42 43 44 49
45 46 47 48 49 50 51 52 53 54 55 61
56 57 58 59 60 61 62 63 64 65 66 73
67 68 69 70 71 72 73 74 75 76 77 1
13 25 37 44 54 64 74 1 73 61 49 78
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APPENDIX

In this appendix, proofs of Theorem 1, Theorem 2, Theorem 3, and Theorem 4 are

presented. Lemma 1 (Gaffke, 1981) is used to facilitate the proof of Theorem 1

Lemma 1. Let x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , yn)′ be n-dimensional vectors

with integer components. If
∑n

i=1 yi =
∑n

i=1 xi and |yi − yj| ≤ 1 for 1 ≤ i 6= j ≤ n then
∑n

i=1 y
2
i ≤

∑n

i=1 x
2
i .

Proof of Theorem 1

It can be shown that

b2k2tr(C2
d) = b2k2tr(R2) + tr(rr′rr′) + 2bktr(Rrr′)

+ b2tr(N1N
′
1N1N

′
1) + k2tr(N2N

′
2N2N

′
2) + 2bktr(N1N

′
1N2N

′
2)

− 2b2ktr(N1N
′
1R) − 2bk2tr(N2N

′
2R) − 2btr(N1N

′
1rr

′) − 2ktr(N2N
′
2rr

′)

= b2k2

v
∑

i=1

r2
i + (

v
∑

i=1

r2
i )

2 + 2bk
v

∑

i=1

r3
i

+ b2tr(N ′
1N1N

′
1N1) + k2tr(N ′

2N2N
′
2N2) + 2bktr(N ′

1N2N
′
2N1)

− 2b2k
v

∑

i=1

r2
i − 2bk2

v
∑

i=1

r2
i − 2b

b
∑

i=1

s2
row,i − 2k

b
∑

j=1

s2

col,j

where srow,i and scol,j are the sums of treatment replicates in the ith row and jth

column, respectively.
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Since any design with the maximum tr(Cd) have b − 1 treatments appearing three

times, k−b ones appearing twice, and v−(k−b)−(b−1) appearing once only,
∑v

i=1 r
2
i =

bk + 4b+ 2k − 6 and
∑v

i=1 r
3
i = bk + 18b+ 6k − 24. It follows that

b2k2tr(C2
d) = b3k3 + 2b3k2 − 8b3k − 15b2k2 − 4bk3 + 56b2k + 28bk2

+ 16b2 − 44kb+ 4k2 − 48b− 24k + 36

+ b2tr(N ′
1N1N

′
1N1) + k2tr(N ′

2N2N
′
2N2) + 2bktr(N ′

1N2N
′
2N1)

− 2b
b

∑

i=1

s2
row,i − 2k

b
∑

j=1

s2

col,j

Consider tr(N ′
1N1N

′
1N1). Let λ[i],j = 1 if the treatment in the (i, k)th cell comes from

the jth row of the first k − 1 columns and 0 otherwise. Then

N ′
1N1 =

















k λ[1],2 + λ[2],1 · · · λ[1],b−1 + λ[b−1],1 h1 + h′1 + 1

λ[2],1 + λ[1],2 k · · · λ[2],b−1 + λ[b−1],2 h2 + h′2 + 1
...

... · · ·
...

...

λ[b−1],1 + λ[1],b−1 λ[b−1],2 + λ[2],b−1 · · · k hb−1 + h′b−1 + 1

h1 + h′1 + 1 h2 + h′2 + 1 · · · hb−1 + h′b−1 + 1 k

















where hi is the number of treatments in the kth column of the first b− 1 rows that come

from the ith row of the first k − 1 columns and h′i is the number of treatments in the

bth row of the first k − 1 columns except those appearing in the k column of the first

b − 1 rows that come from the ith row of the first k − 1 columns. It is observed that
b−1
∑

i=1

(hi + h′i) = k − 1, and for i = 1, 2, · · · , b− 1,
b−1
∑

j=1

λ[i],j = 1.

Thus,

tr(N ′
1N1N

′
1N1) = bk2 + 2

b−1
∑

i=1

(hi + h′i + 1)2 + 2
b−2
∑

i=1

b−1
∑

j=i+1

(λ[i],j + λ[j],i)
2.

When b ≥ 4,

b−2
∑

i=1

b−1
∑

j=i+1

(λ[i],j + λ[j],i)
2 ≥

b−2
∑

i=1

b−1
∑

j=i+1

(λ[i],j + λ[j],i) ≥ b− 1.

By lemma 1, the lower bound is attained when λ[i],j +λ[j],i = 0 or 1 for i = 1, 2, · · · , b−2,

and j = i+ 1, · · · , b− 1.
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Similarly,

N ′
2N2 =

















b µ[1],2 + µ[2],1 · · · µ[1],k−1 + µ[k−1],1 l1 + ψ[1],Ω

µ[2],1 + µ[1],2 b · · · µ[2],k−1 + µ[k−1],2 l2 + ψ[2],Ω

...
... · · ·

...
...

µ[k−1],1 + µ[1],k−1 µ[k−1],2 + µ[2],k−1 · · · b lk−1 + ψ[k−1],Ω

l1 + ψ[1],Ω l2 + ψ[2],Ω · · · lk−1 + ψ[k−1],Ω b

















where µ[i],j = 1 if the treatment in the (b, i)th cell of the design comes from the jth

column of the first b− 1 rows and 0 otherwise; Ω is the set of all treatments in the kth

column except Tv, and ψ[i],Ω = 1 if the treatment in the (b, i)th cell belongs to Ω and 0

otherwise; li is the number of treatments in Ω coming from the ith column of the first

b− 1 rows. Therefore,

tr(N ′
2N2N

′
2N2) = b2k + 2

k−1
∑

j=1

(lj + ψ[j],Ω)2 + 2
k−2
∑

i=1

k−1
∑

j=i+1

(µ[i],j + µ[j],i)
2.

When k ≥ b ≥ 4,

k−2
∑

i=1

k−1
∑

j=i+1

(µ[i],j + µ[j],i)
2 ≥

k−2
∑

i=1

k−1
∑

j=i+1

(µ[i],j + µ[j],i) ≥ k − 1

and the lower bound is attained when µ[i],j + µ[j],i = 0 or 1 for i = 1, 2, · · · , k − 2, and

j = i+ 1, · · · , k − 1.

Let δ[i],j = 1 if the treatment in the (i, k)th cell is from the jth column and 0 otherwise;

∆[j],i = 1 if the treatment in the (b, j)th cell is from the ith row of the first k−1 columns

and 0 otherwise. Then N ′
1N2 =

















1 + δ[1],1 + ∆[1],1 1 + δ[1],2 + ∆[2],1 · · · 1 + δ[1],k−1 + ∆[k−1],1 1 + h1

1 + δ[2],1 + ∆[1],2 1 + δ[2],2 + ∆[2],2 · · · 1 + δ[2],k−1 + ∆[k−1],2 1 + h2

...
... · · ·

...
...

1 + δ[b−1],1 + ∆[1],b−1 1 + δ[b−1],2 + ∆[2],b−1 · · · 1 + δ[b−1],k−1 + ∆[k−1],b−1 1 + hb−1

1 + l1 + l′1 1 + l2 + l′2 · · · 1 + lk−1 + l′k−1 b

















where l′j is the number of treatments in the bth row of the first k− 1 columns that come

from the jth column of the first b− 1 rows and don’t belong to Ω.

Note that, for i = 1, 2, · · · , b − 1,
k−1
∑

j=1

δ[i],j = 2 because the treatment in the (i, k)th

cell of the design is in the first b− 1 rows and k− 1 columns and must also appear in the
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bth row. Hence,
b−1
∑

i=1

k−1
∑

j=1

δ[i],j = 2(b− 1). Similarly, for any j = 1, 2, · · · , k− 1,
b−1
∑

i=1

∆[j],i = 1

since the treatment in the (b, j)th cell of the design must be from the first b − 1 rows

and the first k − 1 columns. Thus
k−1
∑

j=1

b−1
∑

i=1

∆[j],i = k − 1 = (b − 1) + (k − b). Therefore,

b−1
∑

i=1

k−1
∑

j=1

(δ[i],j + ∆[j],i) = 3(b− 1) + (k − b).

It follows that

tr(N ′
1N2N

′
2N1) =

b−1
∑

i=1

k−1
∑

j=1

(1 + δ[i],j + ∆[j],i)
2 +

b−1
∑

i=1

(1 + hi)
2 +

k−1
∑

j=1

(1 + lj + l′j)
2 + b2.

By lemma 1,
b−1
∑

i=1

k−1
∑

j=1

(1+ δ[i],j +∆[j],i)
2 is minimized if the absolute difference between any

two terms is 0 or 1. Since (b − 1)(k − 1) − 3(b − 1) − (k − b) = (k − 3)(b − 2) − 2 ≥ 0

when k ≥ 4 and b ≥ 4,
b−1
∑

i=1

k−1
∑

j=1

(1+ δ[i],j +∆[j],i)
2 is minimized when 3(b− 1)+ (k− b) and

(k − 1)(b− 1) − [3(b− 1) + (k − b)] of (δ[i],j + ∆[j],i)’s equal 1 and 0, respectively. Thus,

b−1
∑

i=1

k−1
∑

j=1

(1 + δ[i],j + ∆[j],i)
2 ≥ 3[3(b− 1) + (k − b)] + (k − 1)(b− 1)

= (b− 1)(k + 8) + 3(k − b)

It can be shown that

b
∑

i=1

s2
row,i =

b−1
∑

i=1

(2hi + h′i + k + 2)2 + (2k + b− 2)2;

and
k

∑

j=1

s2

col,j =
k−1
∑

j=1

(2lj + l′j + ψ[j],Ω + b+ 1)2 + (3b− 2)2.

Let

Ψ = b2tr(N ′
1N1N

′
1N1) + k2tr(N ′

2N2N
′
2N2) + 2bktr(N ′

1N2N
′
2N1)

− 2b
b

∑

i=1

s2
row,i − 2k

k
∑

j=1

s2

col,j.

We have

Ψ = b2

[

bk2 + 2
b−1
∑

i=1

(hi + h′i + 1)2 + 2
b−2
∑

i=1

b−1
∑

j=i+1

(λ[i],j + λ[j],i)
2

]
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+ k2

[

b2k + 2
k−1
∑

j=1

(lj + ψ[j],Ω)2 + 2
k−2
∑

i=1

k−1
∑

j=i+1

(µ[i],j + µ[j],i)
2

]

+ 2bk

[

b−1
∑

i=1

k−1
∑

j=1

(1 + δ[i],j + ∆[j],i)
2 +

b−1
∑

i=1

(1 + hi)
2 +

k−1
∑

j=1

(1 + lj + l′j)
2 + b2

]

− 2b

[

b−1
∑

i=1

(2hi + h′i + k + 2)2 + (2k + b− 2)2

]

− 2k

[

k−1
∑

j=1

(2lj + l′j + ψ[j],Ω + b+ 1)2 + (3b− 2)2

]

≥ 2b2
b−1
∑

i=1

(hi + h′i)
2 − 2b

b−1
∑

i=1

(2hi + h′i)
2 + 2bk

b−1
∑

i=1

h2
i

+ 2k2

k−1
∑

j=1

(lj + ψ[j],Ω)2 − 2k
k−1
∑

j=1

(2lj + l′j + ψ[j],Ω)2 + 2bk
k−1
∑

j=1

(lj + l′j)
2

+ b3k2 + b2k3 + 2b3k − 2b2k2 − 24b2k − 8bk2 + 2b3 + 2k3

+ 28bk − 8k2 − 16b2 + 16b+ 6k

= 2b(b− 2)
b−1
∑

i=1

(hi + h′i)
2 + 2b(k − 2)

b−1
∑

i=1

h2
i + 2b

b−1
∑

i=1

h′i
2

+ 2k(k − 2)
k−1
∑

j=1

(lj + ψ[j],Ω)2 + 2k(b− 2)
k−1
∑

j=1

(lj + l′j)
2 + 2k

k−1
∑

j=1

(ψ[j],Ω − l′j)
2

+ b3k2 + b2k3 + 2b3k − 2b2k2 − 24b2k − 8bk2 + 2b3 + 2k3

+ 28bk − 8k2 − 16b2 + 16b+ 6k

and the equality holds when λ[i],j +λ[j],i = 0 or 1 for i = 1, 2, · · · , b−2, j = i+1, · · · , b−1;

µ[i],j + µ[j],i = 0 or 1 for i = 1, 2, · · · , k− 2, j = i+ 1, · · · , k− 1; and δ[i],j + ∆[j],i = 0 or 1

for i = 1, 2, · · · , b− 1, j = 1, · · · , k − 1.

When 4 ≤ b ≤ k ≤ 2b− 1,
b−1
∑

i=1

h2
i ≥

b−1
∑

i=1

hi = b− 1 and the equality holds when all hi’s

are 1, i.e., treatments in the (i, k)th cells of the design are from different rows, where

i = 1, 2, · · · , b − 1.
b−1
∑

i=1

h′i
2 ≥

b−1
∑

i=1

h′i = k − b and the equality holds if k − b’s h′i’s are 1

and others are 0. That is, treatments appear in the bth row but not in the kth column
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are from different rows. Thus,

b−1
∑

i=1

(hi + h′i)
2 ≥ 4(k − b) + 2b− 1 − k = 3k − 2b− 1.

Similarly,
k−1
∑

j=1

(lj + l′j)
2 ≥

k−1
∑

j=1

(lj + l′j) ≥ k − 1, and equality holds when treatments in

the bth row come from different columns. By lemma 1,
k−1
∑

j=1

(lj +ψ[j],Ω)2 is minimized when

the absolute difference between any two terms of (lj + ψ[j],Ω)’s is at most 1. For 4 ≤ b ≤

k ≤ 2b−1 the minimum of
k−1
∑

j=1

(lj +ψ[j],Ω)2 is attained when 2b−k−1 of (lj +ψ[j],Ω)’s take

2 and 2(k−b) have 1. This can be achieved by arranging k−b treatments from Ω in those

columns that don’t have treatments in the kth column of the first b − 1 rows. Hence,
k−1
∑

j=1

(lj + ψ[j],Ω)2 ≥ 6b− 2k − 4. Moreover,
k−1
∑

j=1

(ψ[j],Ω − l′j)
2 ≥

k−1
∑

j=1

(ψ[j],Ω − l′j) = 2b− k − 1.

Therefore,

Ψ ≥ b3k2 + b2k3 + 2b3k − 2b2k2 − 16b2k + 6bk2 − 2b3 − 2k3

− 6bk − 16b2 − 14k2 + 24b+ 24k,

and it follows that

b2k2tr(C2
d) ≥ b3k3 + b2k3 + 3b3k2 − 17b2k2 − 6b3k − 4bk3

+ 40b2k + 34bk2 − 2b3 − 2k3 − 10k2 − 50bk − 24b+ 36.

Lemma 2 is used for the proof of Theorem 2 and it is from Shivakumar and Chew (1974).

Lemma 2. For a matrix A = (aij)n×n of real numbers with weakly diagonal dominance,

i.e., |aii| ≥
∑n

j=1,j 6=i |aij| for all i ∈ N = {1, 2, · · · , n}. Let J =
{

i ∈ N ||aii| >
∑n

j=1,j 6=i |aij|
}

.

If J is not empty and for each i /∈ J, there is a sequence of nonzero elements of A such

that aii1 , ai1i2 , · · · , airj, and j ∈ J, then A is nonsingular.

Proof of Theorem 2

The (M,S)-optimality of the designs is obtained by observing that equality in inequality

(6) and equalities in all inequalities in the proof of Theorem 1 are attained with the special

arrangement of treatments in the bth row and kth column of the described design.
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To prove the treatment connectedness of the design, it is sufficient to show that the

difference between any treatment and treatment v = (b−1)(k−1)+1 is estimable. Note

that any non-replicated treatment resides in a rectangle where three vertices are repeated

treatments and any tetra-difference of treatment effects from such rectangle is estimable.

For example, treatment 2 is in the rectangle with vertices 2, k + 1, 2k + 1, and k + 1.

Tetra-difference τ2k+1+τ2−τk+1−τk+1 = (τ2k+1−τv)+(τ2−τv)−2(τk+1−τv) is estimable

because τ2k+1 + τ2 − 2τk+1 = E(Y2,k + Y1,2 − Y1,k − Y2,2). Thus, (τ2 − τv) is estimable if

(τ2k+1 − τv) and (τk+1 − τv) are estimable. Therefore, the design is treatment-connected

if all paired differences between repeated treatments and treatment v are estimable.

Consider the b− 1 linear equations produced by tetra-differences involving one treat-

ment in the kth column twice, one treatment in the bth row or the kth column, and

treatment v. For example, the linear equation involving treatment 1 is 2(τ1 − τv) −

(τ(b−2)(k−1)+b − τv) = E(Yb−1,k + Yb,b − Yb−1,b − Yb,k) and the linear equation involving

treatment k+1 is 2(τk+1−τv)−(τ1−τv) = E(Yb,1+Y1,k−Y1,1−Yb,k), etc. The coefficients

in these b− 1 equations are diagonally dominant because each of τ1 − τv, τk+1 − τv, · · · ,

and τ(b−2)(k−1)+b−1 − τv has coefficient two in one of the b − 1 linear equations and the

coefficient of the other difference in that equation is −1.

There are s linear equations from tetra-differences involving twice a treatment from

the bth row but not the kth column of the design, and two treatments from the kth

column. For example, linear equation 2(τ(b−2)(k−1)+b − τv)− (τ1 − τv)− (τ(b−2)(k−1)+b−1 −

τv) = E(Yb−1,b+Yb,b−1−Yb−1,b−1−Yb,b) is derived from the tetra-difference with treatments

(b−2)(k−1)+ b−1, (b−2)(k−1)+ b, 1, and (b−2)(k−1)+ b. The coefficients in these

s equations are weakly diagonally dominant because each of τ(b−2)(k−1)+b − τv · · · , and

τ(b−s)(k−1)−τv has coefficient two in one of the s linear equations which is equal to the sum

of the absolute values of the coefficients of other differences in that equation. Therefore,

the coefficient matrix of the total b−1+s linear equations is weakly diagonally dominant.

Since every linear equation produced by a tetra-difference involving twice a treatment

in the bth row but not in the kth column has a treatment effect in the kth column with

coefficient −1, by Lemma 2, the coefficient matrix is nonsingular. Therefore, all paired

differences between repeated-treatment effects and τv are estimable.

Proof of Theorem 3

The (M,S)-optimality is obtained by observing that equalities in inequality (6) and all

inequalities in the proof of Theorem 1 are attained with the special arrangement of

treatments in the bth row and kth column of the design in Table 3.
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To prove the treatment connectedness of the design for a specific b, it is sufficient to

show that the difference between any treatment effect and the effect of the vth treatment,

where v = (b−1)2+1, is estimable. Note that any off-diagonal or non-repeated treatment

resides in a rectangle where three vertex treatments appear in the kth column and the

b row and any tetra-difference of treatment effects from such rectangle is estimable. For

example, treatment 3 is in the rectangle with vertices 3, 2b + 1, 3b + 1, and b + 1. The

tetra-difference τb+1 +τ2b+1−τ3b+1−τ2 = (τb+1−τv)+(τ2b+1−τv)−(τ3b+1−τv)−(τ3−τv)

is estimable because it is the expectation of Y1,k + Y3,3 − Y3,k − Y1,3. Thus, (τ3 − τv) is

estimable if (τb+1 − τv), (τ2b+1 − τv), and (τ3b+1 − τv) are estimable.

Consider the b− 1 linear equations consisting of all tetra-differences involving treat-

ment v, and two other treatments in the bth row and bth column where one such treatment

appears twice.

2(τ1 − τv) − (τ(b−1)2 − τv) = E(Yb,b−1 + Yb−1,b − Yb,b − Yb−1,b−1)

2(τb+1 − τv) − (τ1 − τv) = E(Yb,1 + Y1,b − Yb,b − Y1,1)
...

2(τ(b−1)2 − τv) − (τb(b−3)+1 − τv) = E(Yb,b−2 + Yb−2,b − Yb,b − Yb−2,b−2)

The coefficient matrix of these linear equations is strictly diagonally dominant (the di-

agonal is 2, one off-diagonal element is −1, and all others are zeros in each row) when

τ1 − τv, τb+1 − τv, · · · , and τ(b−1)2 − τv are diagonal. The Geršgorin circle theorem im-

plies that the coefficient matrix is nonsingular (Berman and Plemnons, 1994, p.106) and

the linear equations have a unique solution. Therefore, any treatment effect difference

between a repeated treatment and v is estimable.

Proof of Theorem 4

Following notations in the proof of Theorem 1, we have

Ψ ≥ 2b(b− 2)
b−1
∑

i=1

(hi + h′i)
2 + 2b(k − 2)

b−1
∑

i=1

h2
i + 2b

b−1
∑

i=1

h′i
2

+ 2k(k − 2)
k−1
∑

j=1

(lj + ψ[j],Ω)2 + 2k(b− 2)
k−1
∑

j=1

(lj + l′j)
2 + 2k

k−1
∑

j=1

(ψ[j],Ω − l′j)
2

+ b3k2 + b2k3 + 2b3k − 2b2k2 − 24b2k − 8bk2 + 2b3 + 2k3

+ 28bk − 8k2 − 16b2 + 16b+ 6k
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Note that
b−1
∑

i=1

h2
i ≥

b−1
∑

i=1

hi = b − 1. The equality holds when all hi’s are 1, that

is, treatments in the k columns are from different rows. When t(b − 1) + 1 < k ≤

(t+ 1)(b− 1) + 1 and t ≥ 2, by lemma 1
b−1
∑

i=1

h′i
2 is minimized when [k− b− (t− 1)(b− 1)]

h′i’s take the value of t and [t(b− 1) − (k − b)] h′i’s are t− 1. Thus

b−1
∑

i=1

h′i
2
≥ [k − b− (t− 1)(b− 1)]t2 + [t(b− 1) − (k − b)](t− 1)2.

Therefore,

b−1
∑

i=1

(hi + h′i)
2 ≥ [k − b− (t− 1)(b− 1)](t+ 1)2 + [t(b− 1) − (k − b)]t2.

Similarly,
k−1
∑

j=1

(lj + l′j)
2 ≥

k−1
∑

j=1

(lj + l′j) ≥ k − 1, and equality holds when treatments in

the bth row come from different columns.
k−1
∑

j=1

(lj +ψ[j],Ω)2 ≥
k−1
∑

j=1

(lj +ψ[j],Ω) ≥ 2(b−1) and

equality holds when no pairs of the treatments in the k column appear in any columns.
k−1
∑

j=1

(ψ[j],Ω − l′j)
2 ≥

k−1
∑

j=1

(l′j −ψ[j],Ω) = k− 2b+ 1 and equality holds when treatments in the

kth column are arranged in those columns that contribute treatments to the bth row but

not kth column.

Therefore,

Ψ ≥ b3k2 + b2k3 + 2b3k − 2b2k2 − (20 − 4t)b2k − 2bk2 + (2 − 2t− 2t2)b3

+ 2k3 + (6 − 4t)bk − (20 − 4t2)b2 − 14k2 + (24 + 2t− 2t2)b+ 20k.

It follows that

b2k2tr(C2
d) ≥ b3k3 + 3b3k2 + b2k3 − 6b3k − 17b2k2 − 4bk3 + (36 + 4t)b2k

+ 26bk2 + (2 − 2t− 2t2)b3 + 2k3 − (38 + 4t)bk

− (4 − 4t2)b2 − 10k2 − (24 − 2t+ 2t2)b− 4k + 36.
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