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Abstract

A maximum estimability (maxest) criterion is proposed for design classification and selection.

It is an extension and refinement of Webb’s resolution criterion for general factorial designs.

By using the estimability vector associated with the maxest criterion, projective properties of

nonregular designs are studied from the estimability perspective. Comparisons with other criteria

are also discussed.
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projection, resolution.

1. Introduction

Factorial designs can be broadly classified into two categories, orthogonal and nonorthogonal.

There are two types of orthogonal designs, regular and nonregular. A regular design is deter-

mined by its defining contrast subgroup which consists of defining relations among the factors. It

has a simple aliasing structure in which two factorial effects are either orthogonal or fully aliased

(i.e., completely indistinguishable). Examples of regular designs include the widely used 2n−(n−k)

designs or more general sn−(n−k) designs, where s is a prime or prime power, n and k are inte-

gers. In contrast, a nonregular design cannot be defined by a defining contrast subgroup, and as

a result, some of its factorial effects are neither orthogonal nor fully aliased. Nonregular designs

include Plackett-Burman designs, designs constructed from Hadamard matrices, and other sym-

metrical and asymmetrical orthogonal arrays (OA) as described in Hedayat et al., (1999). On the

other hand, nonorthogonal designs play an important role in practical experimentation with their

flexibility and economy in level combination and run size. Saturated designs in Rechtschaffner

(1967), balanced arrays (Srivastava and Chopra, 1971) are nonorthogonal designs.

A fundamental issue in factorial designs is how to assign factors to the columns of a plan

matrix. A plan matrix describes the experimental plan by using standard notations for factor
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levels, such as “0” and “1” (or “low” and “high”, etc.) for two levels and “0”, “1” and “2”

(or “low”, “medium” and “high”, etc.) for three levels. Box and Hunter (1961) proposed the

maximum resolution criterion for regular designs. Their concept of resolution can be interpreted

in two equivalent ways, namely, effect aliasing and effect estimability. From the effect-aliasing

point of view, a design has resolution R if no p-factor interactions are aliased with any other effects

containing less than R−p factors, where p and R are integers and 2p < R. From the estimability

perspective, a design has resolution R ≥ 3 if, when R is odd, effects involving (R − 1)/2 or

fewer factors are estimable under the assumption that those involving (R + 1)/2 or more factors

are negligible; when R is even, effects involving (R − 2)/2 or fewer factors are estimable under

the assumption that those involving (R + 2)/2 or more factors are negligible. Extensions of the

maximum resolution, from the effect-aliasing perspective, have been studied extensively. These

include the minimum aberration (MA) criterion (Fries and Hunter, 1980), generalized minimum

aberration (GMA) (Deng and Tang, 1999; Xu and Wu, 2001), minimum moment aberration

(MMA) (Xu, 2003), etc.

Interpretation of the maximum resolution criterion from the estimability perspective was first

generalized to nonregular as well as nonorthogonal designs by Webb (1968) and has been used

to construct many useful nonorthogonal designs. However, Webb’s criterion is so coarse that it

is often used as a classification rule rather than a criterion for design selection. A maximum

estimability (maxest) criterion is proposed for general factorial designs in Section 2. The maxest

criterion is an extension and refinement of Webb’s criterion. In terms of comparing regular

designs of resolution IV, it is shown in Section 3 that the maxest criterion extends the MaxC2

criterion proposed in Wu and Hamada (2000) (hereafter abbreviated as WH). In Section 4, the

maxest criterion is used to study projections of nonregular two-level as well as mixed-level designs.

Comparisons with other criteria are also discussed.

2. The maximum estimability (maxest) criterion

Let Gi = {0, 1, . . . , si−1}, and H be the Cartesian product of Gi, that is, H = G1×· · ·×Gn.

An asymmetrical (or mixed-level) design, denoted by D, of n factors with levels s1, . . . , sn is a

subset of H in which each vector represents a run. D is symmetrical if s1 = · · · = sn. The n-factor

linear model which will be adopted throughout the ensuing development is defined as

E(Y (x)) =
∑
u∈H

χu(x)βu, (1)

or in matrix form

E(Y ) = Xβ, (2)
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where Y (x) is the response of treatment combination x ∈ D, and Y is the vector of Y (x)’s; βu

is a treatment contrast (or factorial effect) and β is the vector of βu’s; χu(x) is a normalized

contrast coefficient and X is the coefficient matrix or model matrix.

For u ∈ H with i nonzero elements, βu is an i-factor interaction. In particular, β(0,...,0)

is the grand mean which has coefficient 1√
|H|

, i.e., χ(0,...,0)(x) = 1√
|H|

for any x ∈ H, where

|H| is the number of elements in H. Two contrasts βu and βv are orthonormal if their contrast

coefficients are orthonormal, i.e.,
∑

x∈H χu(x)χv(x) = δu,v, where δu,v is the Kronecker delta,

which equals 1 if u = v, and 0 otherwise. In this paper, only contrasts defined by tensor products

are considered. Let {χsi
vi

, vi ∈ Gi} be the orthonormal contrasts of the ith factor with si levels,

i.e.,
∑

xi∈Gi
χsi

ui
(xi)χsi

vi
(xi) = δui,vi for any ui, vi ∈ Gi. Then for u = (u1, . . . , un) ∈ H and

x = (x1, . . . , xn) ∈ H, define χu(x) =
∏n

i=1 χsi
ui

(xi).

If there are up to r-factor interactions in model (1), it is called an rth-order model. Thus

a first-order model includes all main effects as well as the grand mean; a second-order model

includes the grand mean, all main effects, and two-factor interactions (2fi’s); a third-order model

includes the grand mean, all main effects, 2fi’s and three-factor interactions (3fi’s); and so on. An

effect in model (1) is said to be estimable if it has a linear unbiased estimator. The importance of

estimability is that there exists a unique best linear unbiased estimator if the effect is estimable.

Now we are ready to introduce the maxest criterion.

Definition 1. For a design D of n factors with s1, · · · , sn levels, let nkj(D) be the num-

ber of estimable k-factor interactions in the jth-order model, k ≤ j, k, j = 1, 2, . . . , n, and

fkj(D)=nkj(D)/
∑

i1<i2<···<ik
(si1 − 1) · · · (sik − 1), where i1, · · · , ik ∈ {1, 2, · · · , n}. The estima-

bility vector (hereafter abbreviated as EV) of D is defined as EV(D) = (f11, f12, f22, f13, f23, f33,

· · · , f1n, f2n · · · , fnn). The maxest criterion sequentially maximizes the components of EV(D).

Let fl(D) be the lth entry of EV(D), l = 1, 2, . . . , n(n+1)/2. For any two designs, D1 and D2, let

l0 be the smallest integer such that fl0(D1) 6= fl0(D2). If fl0(D1) > fl0(D2), then D1 has higher

estimability than D2. D1 is the maxest design if no designs have higher estimability than it.

The maxest criterion extends and refines Webb’s resolution criterion. According to Webb,

f11 = 1 for a design of resolution III; f11 = 1 and f12 = 1 for a design of resolution IV;

f11 = 1, f12 = 1 and f22 = 1 for a design of resolution V. Note that Webb’s criterion is not

able to differentiate designs of the same resolution while the maxest criterion can further classify

resolution III, IV or V designs by the numbers of estimable main effects, 2fi’s, and so on. Another

advantage of the maxest criterion over other criteria is that the component order of the EV can

be defined by users. For example, control-by-noise interactions are more important than main

effects of noise factors in robust parameter design. The effect ordering principle proposed by Wu
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and Zhu (2003) can be achieved by placing control-by-noise interactions ahead of main effects of

noise factors in the EV.

Wu and Chen (1992) proposed the concept of clear effects for regular designs, which states

that a main effect or 2fi is clear if it is not aliased with any other main effects or 2fi’s (hence

it is estimable in the second-order model) and is strongly clear if it is not aliased with any 3fi’s

as well (therefore, it is estimable in the third-order model). Clear effects in Definition 2 extend

Wu-Chen’s definition to nonregular as well as nonorthogonal designs.

Definition 2. A main effect is eligible if it is estimable in the first-order model. A main effect

or 2fi is clear if it is estimable in the second-order model and is strongly clear if it is estimable in

the third-order model.

For simplicity, only main effects and 2fi’s are considered in up to the third-order model in

this paper. That is, EV = (f11, f12, f22, f13, f23). Higher-order effects and models can be studied

similarly. Since the elements of EV are relative frequencies of eligible main effects, clear main

effects and 2fi’s, and strongly clear main effects and 2fi’s, designs with EV = (1, 1, 1, 1, 1) are

maxest design. Recall that two designs are isomorphic if one can be obtained from the other

by relabelling factors, reordering runs or switching the levels of factors. It is obvious that two

isomorphic designs have the same EV.

Generally, it is not easy to check the estimability of factorial effects. Milliken (1971) proposed

a simple approach to check the estimability of linear combinations of parameters in a linear

model. According to Milliken’s procedure, only one number needs to be computed and compared

in order to check the estimability of an effect. That is, an effect is estimable if and only if

rank(X) = rank(X?) + 1, where X is the model matrix and X? is obtained from X by deleting

the coefficient vector of the effect. Thus a necessary and sufficient condition for an effect to be

estimable is that its coefficient vector is linearly independent of others in the model matrix.

The maxest criterion is different from the GMA criterion in Xu and Wu (2001). The former

concerns the estimability of main effects and 2fi’s and maximizes the number of clear effects.

The latter minimizes the aliasing of high-order effects to low-order effects. Generally, as shown

in Example 2, a GMA design is not necessarily a maxest design. It has been shown that the

GMA criterion is independent of coding systems. Example 1 shows that the maxest criterion is

coding-dependent unless all the factors appear at two levels. For a fixed design, different coding

systems result in different EV’s.

Example 1. Consider a three-level design of four factors, A, B, C, and D with a defining

relation D = ABC. If all the factors are quantitative, there are two popular coding systems, the
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orthogonal components and the linear-quadratic system (WH, Chapter 5). It can be shown that

EV = (1, 1, 12/24, 0, 0) under the orthogonal components coding while EV = (1, 1, 0, 0, 0) for the

linear-quadratic system.

Example 2. There are two 20-run orthogonal arrays in Table 2. One is the six-factor GMA

design (Sun et al., 2001) and the other is a projection with columns 1, 2, 3, 6, 8, and 17 of the

20-run P design in Appendix A. It can be shown that the GMA design has EV = (1, 0, 0, 0, 0)

and the projection has EV = (1, 1, 3/15, 0, 0). That is, the GMA design has no clear effects while

all the main effects and three 2fi’s are clear in the projection.

Table 2

20-run orthogonal arrays of six factors

Run GMA Projection
1 1 1 1 0 1 1 0 0 0 0 0 1
2 1 1 1 0 0 1 0 1 1 0 1 1
3 1 1 0 1 1 0 1 0 1 1 1 0
4 1 1 0 1 0 1 1 1 0 1 0 1
5 1 1 0 0 0 0 1 1 1 1 1 0
6 1 0 1 1 1 0 0 0 0 1 1 1
7 1 0 1 1 0 1 0 1 1 1 0 1
8 1 0 1 0 0 0 1 0 1 0 0 1
9 1 0 0 1 1 1 1 1 0 0 1 1
10 1 0 0 0 1 0 1 1 1 0 0 0
11 0 1 1 1 1 0 1 0 0 1 0 0
12 0 1 1 1 0 1 1 1 0 0 0 0
13 0 1 1 0 1 0 0 0 0 0 0 0
14 0 1 0 1 0 0 1 0 0 1 1 1
15 0 1 0 0 1 1 0 0 1 0 1 0
16 0 0 1 1 0 0 0 1 1 1 0 1
17 0 0 1 0 1 1 0 1 0 0 1 0
18 0 0 0 1 1 1 0 1 0 1 1 0
19 0 0 0 0 0 1 1 0 1 0 1 1
20 0 0 0 0 0 0 0 0 1 1 0 0

3. The maxest criterion for regular designs

In this section the maxest criterion is studied for regular two-level designs. As suggested

by WH, designs of three-level factors or higher could be treated as either nonregular or regular

depending on the coding systems. Let D be a 2n−(n−k) design. Then D is completely determined

by its defining contrast subgroup. The following result is self-explanatory.

Theorem 1. If D is a design of resolution III or higher, k12 denotes the number of distinct

letters in three-letter words, and k13 is the number of distinct letters in three- or four-letter words

in the defining contrast subgroup. Let k22 be the number of distinct pairs in three- or four-letter

words and k23 be the number of distinct pairs in three-, four- or five-letter words. Then

EV (D) = (1, 1− k12/n, 1− 2k22/n(n− 1), 1− k13/n, 1− 2k23/n(n− 1)) .
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Let M(k) be the maximum number of factors that can be accommodated in a 2n−(n−k) design

of resolution V or higher. Chen and Hedayat (1998) studied the existence of clear 2fi’s in 2n−(n−k)

designs. Tang, Ma, Ingram, and Wang (2000) gave the upper bound number of clear 2fi’s in a

resolution IV design. These results are summarized in Theorem 2 using the current terminology.

Theorem 2. Let D be a maxest 2n−(n−k) design. Then

(i) for n ≤ M(k), EV(D) = (1, 1, 1, 1, f23), where 0 ≤ f23 ≤ 1,

(ii) for M(k) < n ≤ 2k−2 + 1, EV(D) = (1, 1, α, f13, f23), where 0 ≤ f13 ≤ 1 and

f23 ≤ α ≤

{
min

(
1, (2k+1 − 4n− 2)/n(n− 3)

)
if n is odd

min
(
1, (2k+1 − 4n)/(n− 1)(n− 2)

)
if n is even

,

(iii) for 2k−2 + 1 < n ≤ 2k−1, EV(D) = (1, 1, 0, 0, 0),

(iv) for 2k−1 < n ≤ 2k − 1, EV(D) = (1, 0, 0, 0, 0).

For n ≤ M(k), f23 in Theorem 2 can be 0, 1 or strictly between 0 and 1. For example, when

k = 4, M(k) = 5, f23 = 0 in the 25−(5−4)
V design with 5 = 1234. When k = 5, M(k) = 6,

f23 = 1 in the 26−(6−5)
V I design with 6 = 12345. When k = 6, M(k) = 8, f23 = 9

28 in the 28−(8−6)
V

design with 7 = 1234 and 8 = 1256. According to (iv) of Theorem 2, no 2n−(n−4), 2n−(n−5), and

2n−(n−6) designs have any clear main effects or 2fi’s for 8 < n ≤ 15, 16 < n ≤ 31, 32 < n ≤ 63,

respectively.

For designs of resolution IV, the GMA criterion is equivalent to the MA criterion which

minimizes the number of four-letter words in the defining contrast subgroup. However, minimizing

the number of four-letter words doesn’t necessarily minimize the number of 2fi’s being aliased

or maximize the number of clear 2fi’s. As a supplement to the MA criterion, WH proposed a

MaxC2 criterion to select 2n−(n−k)
IV designs, i.e., among all designs of resolution IV, those with the

maximum number of clear 2fi’s are the best. It is easy to see that the maxest criterion includes

the MaxC2 criterion as a special case when designs of resolution IV are compared.

4. Projections of nonregular designs

Traditionally, nonregular designs are mainly used for screening because of the complex aliasing

structure among their effects. A paradigm shift was first suggested by Hamada and Wu (1992),

who showed that for designed experiments with complex aliasing, it is possible to estimate some

interactions. Since then much work (Wang and Wu, 1995; Lin and Draper, 1995; Deng, Li and

Tang, 2000, etc.) has been done on projection properties of nonregular designs. All these studies

reveal that nonregular designs enjoy better projection properties, which makes it possible to do

screening and optimization simultaneously (Cheng and Wu, 2001).
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Projections of 16-run Hall’s designs, 20-run designs from Hadamard matrices will be studied

using the EV associated with the maxest criterion in Sections 4.1 and 4.2. Mixed-level design

OA(36, 312211) is analyzed in Section 4.3. Comparisons of results with Lin-Draper’s (LD), Wang-

Wu’s (WW), and Deng-Li-Tang’s (DLT) will be discussed as well.

4.1. Projections of 16-run Hall’s designs

Hall’s designs of 16 runs are the ones in which both full aliasing and partial aliasing occur.

There are five non-isomorphic Hall’s designs, labelled as H16I, H16II, H16III, H16IV and H16V.

In particular, H16I is the regular 215−(15−4)
III design. Lists of H16II to H16V can be found in

Appendix 7B of WH.

Classes of projections in H16II to H16V and their EV’s are summarized in Table 3, where

M16-n.k is the kth class when any of the four designs are projected onto n factors. These classes

are arranged in an ascending order of estimability. For example, M16-5.1 has no clear effects and

M16-5.2 has one clear 2fi. Therefore, M16-5.2 has higher estimability than M16-5.1. For each

design, the percentage of projections of M16-n.k is listed. For instance, 7.2% of 3003 projections

onto five factors in H16II are of M16-5.9. This is actually the maxest projection among all 5-

dimensional projections. None of 5-dimensional projections in H16IV and H16V are of M16-5.9.

Projections onto 9 or more factors are not listed because they have no clear main effects or 2fi’s.

That is, EV = (1, 0, 0, 0, 0). The rest of this section is devoted to discussing Table 3.

Designs H16II to H16V have the same five classes of projections onto four factors and H16IV

and H16V have the same frequencies as well. All the main effects and 2fi’s are strongly clear in

projections of M16-4.5 (the maxest four-dimensional projections). LD pointed out that designs

H16II, H16III, H16IV and H16V have 4, 4, 3, 5 types of geometric projections, respectively. The

five projections, denoted by LD4.a to LD4.e, in LD (page 116) and their EV’s are given in Table 4.

Recall that isomorphic designs have the same EV, 1, 1, and 2, types of 4-dimensional projections

in H16II, H16III, and H16IV are overlooked by LD.

Designs H16II and H16III have the same 9 classes of projections onto five factors, but their

frequencies are different. H16IV and H16V have the same 8 classes and frequencies. All the main

effects are strongly clear and all 2fi’s are clear in projections of M16-5.9 (the maxest projections).

In contrast, H16II, H16III, H16IV and H16V have 6, 6, 4, 7 geometric classes in LD, respectively.

The eight projections, denoted by LD5.a to LD5.h, in LD (page 117) and their EV’s are given

in Table 4. Similarly, 3, 3, 4, and 1 classes of 5-dimensional projections in H16II, H16III, H16IV,

and H16V are overlooked by LD.

According to the maxest criterion, H16II is the best. It has the largest proportion of maxest
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Table 3

Projections of H16II, H16III, H16IV, and H16V

Class EV H16II H16III H16IV H16V
M16-3.1 (1, 0, 0, 0, 0) 4.18 2.42 1.54 1.54
M16-3.2 (1, 1, 1, 1, 1) 95.82 97.58 98.46 98.46

M16-4.1 (1, 1/4, 3/6, 1/4, 0) 16.70 9.67 6.15 6.15
M16-4.2 (1, 1, 0, 0, 0) 4.18 2.42 1.54 1.54
M16-4.3 (1, 1, 1, 1/4, 0) 14.07 21.10 24.62 24.62
M16-4.4 (1, 1, 1, 2/4, 1/6) 21.10 31.65 36.92 36.92
M16-4.5 (1, 1, 1, 1, 1) 43.96 35.16 30.77 30.77

M16-5.1 (1, 0, 0, 0, 0) 3.30 14.90 23.08 23.08
M16-5.2 (1, 0, 1/10,0, 0) 9.59 7.99 5.59 5.59
M16-5.3 (1, 1/5, 0, 0, 0) 4.80 4.00 2.80 2.80
M16-5.4 (1, 2/5, 7/10, 2/5, 1/10) 25.57 13.59 8.39 8.39
M16-5.5 (1, 3/5, 7/10, 0, 0) 19.18 22.38 22.38 22.38
M16-5.6 (1, 4/5, 6/10, 0, 0) 9.58 11.19 11.19 11.19
M16-5.7 (1, 1, 4/10, 1/5, 4/10) 12.79 6.79 4.20 4.20
M16-5.8 (1, 1, 1, 0, 0) 12.79 19.18 22.38 22.38
M16-5.9 (1, 1, 1, 1, 0) 7.20 0.80 0.00 0.00

M16-6.1 (1, 0, 0, 0, 0) 6.01 14.13 14.83 19.72
M16-6.2 (1, 0, 1/15, 0, 0) 0.00 19.18 33.57 33.57
M16-6.3 (1, 0, 3/15, 0, 0) 12.47 8.15 6.71 3.36
M16-6.4 (1, 0, 4/15, 0, 0) 11.51 9.59 6.71 6.71
M16-6.5 (1, 0, 9/15, 0, 0) 1.44 0.32 0.00 0.00
M16-6.6 (1, 1/6, 0, 0, 0) 0.00 7.67 13.43 13.43
M16-6.7 (1, 1/6, 2/15, 0, 0) 5.75 2.88 0.00 0.00
M16-6.8 (1, 1/6, 3/15, 0, 0) 23.02 19.18 13.43 13.43
M16-6.9 (1, 1/6, 5/15, 1/6, 0) 14.39 5.51 2.52 3.36
M16-6.10 (1, 2/6, 1/15, 0, 0) 8.63 5.75 5.03 2.52
M16-6.11 (1, 3/6, 6/15, 0, 0) 8.63 1.92 0.00 0.00
M16-6.12 (1, 4/6, 0, 0, 0) 5.75 4.80 3.36 3.36
M16-6.13 (1, 1, 0, 0, 0) 2.40 0.92 0.42 0.52

M16-7.1 (1, 0, 0, 0, 0) 24.66 46.54 59.97 60.71
M16-7.2 (1, 0, 1/21, 0, 0) 19.09 30.96 22.19 28.72
M16-7.3 (1, 0, 2/21, 0, 0) 2.24 0.37 0.00 0.00
M16-7.4 (1, 0, 3/21, 0, 0) 8.95 4.48 5.22 0.00
M16-7.5 (1, 0, 4/21, 0, 0) 5.59 0.75 0.00 0.00
M16-7.6 (1, 1/7, 0, 0, 0) 9.70 10.32 7.40 9.57
M16-7.7 (1, 1/7, 1/21, 0, 0) 2.24 0.37 0.00 0.00
M16-7.8 (1, 1/7, 2/21, 0, 0) 6.71 3.36 3.90 0.00
M16-7.9 (1, 1/7, 6/21, 1/7, 0) 2.61 0.87 0.00 0.87
M16-7.10 (1, 2/7, 2/21, 0, 0) 5.59 0.75 0.00 0.00
M16-7.11 (1, 3/7, 0, 0, 0) 2.24 1.12 1.31 0.00
M16-7.12 (1, 1, 0, 0, 0) 0.37 0.12 0.00 0.12

M16-8.1 (1, 0, 0, 0, 0) 71.05 85.31 89.09 92.03
M16-8.2 (1, 0, 1/28, 0, 0) 15.66 9.57 6.96 6.09
M16-8.3 (1, 0, 2/28, 0, 0) 5.59 1.49 1.31 0.00
M16-8.4 (1, 1/8, 0, 0, 0) 4.48 2.74 1.99 1.74
M16-8.5 (1, 1/8, 2/28, 0, 0) 1.86 0.50 0.44 0.00
M16-8.6 (1, 1/8, 7/28, 1/8, 0) 0.37 0.12 0.00 0.12
M16-8.7 (1, 2/8, 0, 0, 0) 0.93 0.25 0.22 0.00
M16-8.8 (1, 1, 0, 0, 0) 0.05 0.02 0.00 0.02
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Table 4

Geometric projections onto four and five factors

Design EV Design EV Design EV Design EV

LD4.a (1, 1
4
, 3

6
, 1

4
, 0) LD4.b (1, 1, 0, 0, 0) LD4.c (1, 1, 1, 1, 1) LD4.d (1, 1, 1, 1

4
, 0)

LD4.e (1, 1, 1, 2
4
, 1

6
)

LD5.a (1, 0, 0, 0, 0) LD5.b (1, 2
5
, 7

10
, 2

5
, 1

10
) LD5.c (1, 1, 4

10
, 1

5
, 4

10
) LD5.d (1, 1, 1, 1, 0)

LD5.e (1, 0, 1
10

, 0, 0) LD5.f (1, 1, 1, 0, 0) LD5.g (1, 0, 0, 0, 0) LD5.h (1, 1
5
, 0, 0, 0)

projections and the smallest proportion of projections with minimum estimability at each dimen-

sion except three (where H16IV and H16V are the best). Design H16III is the second best, H16V

the third and H16IV the fourth. In terms of GMA, H16III is favored because most of the top 10

GMA projections in DLT are from H16III.

4.2. Projections of 20-run designs from Hadamard matrices

There are three non-isomorphic Hadamard matrices of order 20, commonly called N, P and

Q. In particular, Q is equivalent to the 20-run Plackett-Burman design (WH, Appendix 7A.2).

Designs N and P are given in Appendix A. Let M20-n.k denote the kth class of projections onto

n factors for designs N, P and Q. A summary of projections onto 4 to 7 factors is given in Table 5.

Neither projections onto 3 factors nor projections onto 8 or more factors are listed because there

is only one class in each case. All the main effects and 2fi’s are strongly clear in 3-dimensional

projections, i.e., EV = (1, 1, 1, 1, 1). Projections onto 8 more factors have no clear main effects or

2fi’s, i.e., EV = (1, 0, 0, 0, 0). The rest of this section will discuss results in Table 5.

Designs N, P and Q have the same 3 classes and frequencies of projections onto four factors.

All 4-dimensional projections have clear main effects and 2fi’s. The maxest projections are of

M20-4.3 and have all the main effects and 2fi’s being strongly clear. There are three projections

in LD, 20-4.1, 20-4.2, and 20-4.3. Their EV’s are (1, 1, 1, 0, 0), (1, 1, 1, 1/4, 0), and (1, 1, 1, 1, 1),

respectively.

For 5-dimensional projections, designs N, P and Q have the same 5 classes but different

frequencies. All the main effects and 2fi’s are clear, but are not strongly clear in projections

of M20-5.5 (the maxest projections). LD showed that there are 10 non-isomorphic projections,

labelled by 20-5.1 to 20-5.10. These labels do not indicate their relative ranks in terms of any

design criterion. The maxest and GMA ranks of these 10 projections as well as their EV’s are

given in Table 6 where designs with the smallest rank is the best in terms of maxest or GMA.

Again, the maxest and GMA ranks are different. For example, 20-5.8 is better than 20-5.10 in

terms of GMA, but is worse in terms of maxest. This is not surprising because the two criteria
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are defined from different perspectives. However, most of the maxest ranks are consistent with

the GMA ranks. That is, designs with more estimability generally have less aberration.

Designs P and N have the same 11 classes of 6-dimensional projections but different frequencies

and Q has two fewer classes than P or N. All the main effects as well as three 2fi’s are clear in

projections of M20-6.11 (the maxest projections). Design Q has no projections of M20-6.11. On

the other hand, there are 59, 56 and 50 non-isomorphic projections in WW. Thus, classification

in this paper is coarser than WW’s.

According to the maxest criterion, P is the best. It has the largest proportion of maxest pro-

jections and the smallest proportion of projections with minimum estimability at each dimension.

Design N is the second best, and Q is the third. The GMA criterion in DLT favors N because

almost all the top 10 projections are from N. WW identifies Q as the best in terms of hidden

projection properties because Q does not have the “worst” projections.

4.3. Projections OA(36, 312211)

Recall that if all the factors are quantitative, there are two popular coding systems in three-

level designs, the orthogonal components and the linear-quadratic system. Since the maxest

criterion is coding-dependent, projection properties of three-level designs will be studied under

a specific coding system. The difference in using two coding systems has been elaborated in

Example 1. Even though the orthogonal components coding is commonly used in practice and

computationally easier to handle, its contrasts are difficult to be interpreted in data analysis. On

the other hand, contrasts in the linear-quadratic system have better interpretations (WH, Section

5.6). Therefore, the linear-quadratic system is favored here to exploit the projection properties of

three-level designs. Results of OA(36, 312211) are briefly discussed below and details are available

from the author upon request. For simplicity, the strongly clear property of factorial effects will

not be considered. That is, EV has three elements in the following discussion.

Projective properties of OA(36, 312211) (WH, Table 7C.7) are complicated by the presence of

two-level factors. Only projections including both two-level and three-level factors are considered

here. Generally, in order to find all classes of projections onto n3 three-level factors and n2

two-level factors of OA(36, 312211), it is necessary to enumerate all
(
12
n3

)(
11
n2

)
projections. This

is computationally intensive with regard to GMA and MMA, but is much easier for the maxest

criterion. It has been verified that no projections onto five (six) or more factors have any clear

effects in the two-level (three-level) part of OA(36, 312211). Therefore, only n2 ≤ 4 and n3 ≤ 5

need to be considered.

Table 7 lists the numbers of projection classes based on the maxest criterion, EV’s of the

10



Table 5

Projections of Q, P and N

Class EV Q P N

% Columns % Columns % Columns

M20-4.1 (1, 1, 1, 0, 0) 5.88 {1, 2, 3, 16} 5.88 {1, 2, 3, 16} 5.88 {1, 2, 3, 16}
M20-4.2 (1, 1, 1, 1/4, 0) 23.53 {1, 2, 3, 6} 23.53 {1, 2, 3, 6} 23.53 {1, 2, 3, 6}
M20-4.3 (1, 1, 1, 1, 1) 70.59 {1, 2, 3, 4} 70.59 {1, 2, 3, 4} 70.59 {1, 2, 3, 4}

M20-5.1 (1, 0, 0, 0, 0) 1.47 {1, 2, 3, 6, 9} 1.86 {1, 2, 5, 6, 7} 1.65 {1, 2, 4, 5, 6}
M20-5.2 (1, 1/5, 2/10, 0, 0) 13.24 {1, 2, 3, 4, 11} 8.98 {1, 2, 3, 4, 15} 11.66 {1, 2, 3, 4, 5}
M20-5.3 (1, 1/5, 4/10, 0, 0) 5.88 {1, 2, 3, 4, 15} 4.33 {1, 2, 3, 5, 17} 5.37 {1, 2, 4, 7, 10}
M20-5.4 (1, 2/5, 3/10, 0, 0) 11.76 {1, 2, 3, 4, 6} 8.67 {1, 2, 3, 5, 8} 10.73 {1, 2, 4, 5, 18}
M20-5.5 (1, 1, 1, 0, 0) 67.65 {1, 2, 3, 4, 5} 76.16 {1, 2, 3, 4, 5} 70.59 {1, 2, 3, 4, 8}

M20-6.1 (1, 0, 0, 0, 0) 52.94 {1, 2, 3, 4, 5, 8} 43.03 {1, 2, 3, 4, 5, 11} 48.4 {1, 2, 3, 4, 5, 6}
M20-6.2 (1, 0, 1/15, 0, 0) 18.91 {1, 2, 3, 4, 5, 6} 17.25 {1, 2, 3, 4, 5, 6} 18.58 {1, 2, 4, 5, 8, 14}
M20-6.3 (1, 0, 2/15, 0, 0) 5.04 {1, 2, 3, 4, 7, 10} 9.55 {1, 2, 3, 4, 6, 11} 7.08 {1, 2, 4, 5, 6, 12}
M20-6.4 (1, 0, 3/15, 0, 0) 6.09 {1, 2, 3, 4, 5, 7} 3.18 {1, 2, 3, 6, 11, 18} 5.19 {1, 2, 3, 4, 8, 17}
M20-6.5 (1, 1/6, 0, 0, 0) 7.56 {1, 2, 3, 4, 5, 15} 6.9 {1, 2, 3, 4, 6, 7} 7.43 {1, 2, 4, 5, 8, 9}
M20-6.6 (1, 1/6, 1/15, 0, 0) 2.52 {1, 2, 3, 5, 6, 15} 4.78 {1, 2, 3, 4, 5, 10} 3.54 {1, 2, 4, 5, 6, 8}
M20-6.7 (1, 1/6, 2/15, 0, 0) 1.26 {1, 2, 3, 7, 9, 17} 6.37 {1, 2, 3, 5, 6, 10} 2.83 {1, 2, 3, 4, 8, 12}
M20-6.8 (1, 2/6, 0, 0, 0) 1.26 {1, 2, 3, 4, 16, 17} 2.39 {1, 2, 3, 4, 10, 15} 1.77 {1, 2, 4, 5, 12, 14}
M20-6.9 (1, 2/6, 1/15, 0, 0) 4.41 {1, 2, 3, 4, 5, 13} 1.59 {1, 2, 3, 9, 10, 17} 3.54 {1, 2, 4, 5, 8, 10}
M20-6.10 (1, 2/6, 7/15, 0, 0) 0.00 NA 4.25 {1, 2, 3, 5, 6, 16} 1.42 {1, 2, 3, 4, 5, 8}
M20-6.11 (1, 1, 3/15, 0, 0) 0.00 NA 0.71 {1, 2, 3, 6, 8, 17} 0.24 {4, 5, 6, 7, 8, 10}

M20-7.1 (1, 0, 0, 0, 0) 100.00 {1, 2, 3, 4, 5, 6, 7} 96.00 {1, 2, 3, 4, 5, 6, 7} 98.48 {1, 2, 3, 4, 5, 6, 7}
M20-7.2 (1, 0, 1/21, 0, 0) 0.00 NA 2.57 {1, 2, 3, 5, 6, 7, 16} 1.14 {1, 2, 3, 5, 6, 7, 8}
M20-7.3 (1, 0, 2/21, 0, 0) 0.00 NA 0.29 {1, 2, 3, 5, 6, 8, 10} 0.00 NA

M20-7.4 (1, 1/7, 0, 0, 0) 0.00 NA 0.86 {1, 2, 3, 5, 6, 7, 11} 0.38 {1, 2, 4, 5, 6, 7, 8}
M20-7.5 (1, 1/7, 1/21, 0, 0) 0.00 NA 0.29 {1, 2, 3, 5, 6, 7, 12} 0.00 NA
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Table 6

Comparisons of projection rankings

Design EV Maxest GMA Design EV Maxest GMA

20-5.1 (1, 1, 1, 0, 0) 1 1 20-5.6 (1, 1/5, 4/10, 0, 0) 3 4

20-5.2 (1, 2/5, 3/10, 0, 0) 2 6 20-5.7 (1, 1, 1, 0, 0) 1 3

20-5.3 (1, 1, 1, 0, 0) 1 5 20-5.8 (1, 0, 0, 0, 0) 5 9

20-5.4 (1, 1/5, 2/10, 0, 0) 4 7 20-5.9 (1, 1/5, 2/10, 0, 0) 4 8

20-5.5 (1, 1, 1, 0, 0) 1 2 20-5.10 (1, 1/5, 2/10, 0, 0) 4 10

maxest, and MMA projections (Xu, 2003). For example, there are 10 classes of projections onto

4 three-level and 3 two-level factors in OA(36, 312211). The maxest projection with columns 1,

3, 4, 5, 13, 14, and 15 has 3 clear main effects and 3 clear 2fi’s. In contrast, the MMA projection

with columns 1, 5, 9, 10, 16, 21, and 23 has no clear effects. Therefore, an MMA design may not

be a maxest design.

Table 7

Projections of OA(36, 312211)

(n3, n2) Class Maxest MMA

EV Columns EV Columns

(1, 1) 1 (1, 1, 1) {1, 13} (1, 1, 1) {1, 13}
(1, 2) 1 (1, 1, 1) {1, 13, 14} (1, 1, 1) {1, 13,14}
(1, 3) 1 (1, 1, 1) {1, 13, 14, 15} (1, 1, 1) {1, 13, 14, 15}
(1, 4) 1 (1, 1, 1) {1, 13, 14, 15, 16} (1, 1, 1) {1, 13, 14, 15, 16}
(2, 1) 2 (1, 1, 1) {1, 2, 20} (1, 1, 1) {1, 2, 20}
(2, 2) 3 (1, 1, 1) {1, 3, 15, 16} (1, 1, 1) {1, 3, 15, 16}
(2, 3) 8 (1, 1, 1) {2, 3, 13, 15, 23} (1, 1, 1) {2, 3, 13, 15, 23}
(2, 4) 10 (1, 4/8, 18/26) {1, 7, 13, 14, 15, 16} (1, 4/8, 16/26) {1, 3, 15, 16, 19, 20}
(3, 1) 6 (1, 1, 1) {1, 2, 8, 20} (1, 1, 1) {1, 2, 8, 20}
(3, 2) 25 (1, 1, 1) {4, 9, 10, 16, 21} (1, 1, 1) {4, 9, 10, 16, 21}
(3, 3) 32 (1, 5/9, 3/33) {5, 6, 12, 13, 16, 17} (1, 0, 0) {2, 3, 4, 15, 21, 23}
(3, 4) 4 (1, 0, 6/42) {8, 10, 12, 13, 14, 15, 20} (1, 0, 0) {2, 3, 4, 13, 15, 21, 23}
(4, 1) 16 (1, 5/9, 0) {1, 4, 5, 11, 13} (1, 1/9, 0) {1, 5, 9, 10, 21}
(4, 2) 24 (1, 3/10, 0) {1, 2, 10, 11, 14, 21} (1, 2/10, 0) {1, 5, 9, 10, 16, 21}
(4, 3) 10 (1, 3/11, 3/51) {1, 3, 4, 5, 13, 14, 15} (1, 0, 0) {1, 5, 9, 10, 16, 21, 23}
(5, 1) 6 (1, 3/11, 0) {1, 2, 3, 4, 6, 13} (1, 0, 0) {1, 2, 6, 7, 11, 21}
(5, 2) 5 (1, 3/12, 0) {1, 3, 4, 5, 6, 16, 17} (1, 0, 0) {1, 2, 6, 7, 11, 18, 21}

5. Conclusions and Remarks

This paper introduces a new criterion to address the problem of optimal factor assignment

in factorial designs. The maxest criterion is an extension of the maximum resolution criterion

in regular designs and is a refinement of Webb’s resolution criterion for general factorial designs.

It is coding-dependent, which differs from other coding-independent criteria such as GMA and

MMA.
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The maxest criterion is applied to study projections of nonregular designs. Comparisons with

other projective properties such as the geometric projection, hidden projection, GMA, and MMA

projection are also discussed. The new classification is simpler and is oriented towards statistical

modelling. The maxest criterion can also be applied for other purposes such as constructing new

optimal designs for factor screening and response surface exploration. This will be studied later.
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Appendix A. 20-run Hall’s designs of types N and P

Type N
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
3 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1
4 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0
5 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0
6 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0
8 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1
9 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1
10 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1
11 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
12 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0
13 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1
14 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1
15 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0
16 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
17 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1
18 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0
19 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1
20 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0

Type P
1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0
2 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0
3 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0
4 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1
5 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0
6 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0
7 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0
8 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0
9 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1
10 1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1
11 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0
12 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0
13 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1
15 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 1
16 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1
17 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0
18 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1
19 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1
20 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1
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