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Abstract

Use of the (M,S) criterion to select and classify factorial designs is proposed and studied.

The criterion is easy to deal with computationally and it is independent of the choice of

treatment contrasts. It can be applied to two-level designs as well as multi-level symmetri-

cal and asymmetrical designs. An important connection between the (M,S) and minimum

aberration criteria is derived for regular fractional factorial designs. Relations between

the (M,S) criterion and generalized minimum aberration criteria on nonregular designs are

also discussed. The (M,S) criterion is then applied to study the projective properties of

some nonregular designs.
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1. Introduction

Screening designs are popularly used in practice to identify a few significant factors

among many potential candidate factors. A fundamental question in physical experimen-

tation as well as scientific research is how to select the best design. A lot of research has

been done and many criteria have been proposed. Box and Hunter (1961) proposed the

maximum resolution criterion for regular fractional factorial designs. Fries and Hunter

(1980) extended Box and Hunter’s criterion and suggested the minimum aberration (MA)

criterion. The MA criterion is the most popular criterion in design selection and it has

many good properties such as model robustness. For details, see Cheng, Steinberg and

Sun (1999) and references therein. In this paper, (M,S)-optimality will be used to select

two-level factorial designs. The (M,S) procedure (Eccleston and Hedayat, 1974) has been
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widely used and advocated in optimal design literature. Shah and Sinha (1989) has many

examples of theory and applications of (M,S)-optimality.

For a two-level design d with N runs of n factors, consider the following linear model

E[y(x1, x2, . . . , xn)] = β0 +
n

∑

i=1

βixi +
n−1
∑

i=1

n
∑

j=i+1

βijxixj, (1)

where y(x1, x2, . . . , xn) is the observed response of treatment (x1, x2, . . . , xn), xi is the

level of factor i and takes the value −1 or 1 (i = 1, . . . , n). β0 is the grand mean, βi is the

main effect of factor i, βij is the interaction between factors i and j, and so on. All the

three-factor or higher-order interactions are omitted in model (1). Model (1) can also be

written in matrix form, i.e.,

Y = X1β1 + X2β2 + ǫ, (2)

where Y is an N × 1 vector of observations, X1 = (1N,x1, · · · ,xn), 1N denotes an N × 1

vector of 1’s, β′
1

= (β0, β1, · · · , βn) represents the grand mean and the n main effects.

β2 is the vector of
(

n

2

)

two-factor interaction (2fi’s) parameters, X2 is the corresponding

coefficient matrix of 2fi’s and ǫ is a vector of independent random errors with mean 0 and

constant variance σ2. In general β1 can be any parameter subset that is of primary interest,

with β2 representing “secondary” parameters. For example, for a design of resolution V β1

could contain all main effects and 2fi’s and β2 could contain three-factor (and even higher-

order) interactions. Under the assumption of normality of errors, the Fisher information

matrix of β2 adjusted for β1 is

Cd = X ′
2X2 − (X ′

1X2)
′(X ′

1X1)
−1(X ′

1X2).

Since Cd is symmetric, we denote C ′
dCd as C2

d in the following discussion. The (M,S)

criterion first identifies a subclass of designs that maximize trace(Cd) and then finds designs

within this subclass that minimize trace(C2
d). If a design has the maximum trace(Cd) and

minimum trace(C2
d) within a class of designs, D, it is called an (M,S)-optimal design in D.

For a 2n−p regular design with one replicate,

X ′
1X1 = 2n−pIn+1,

where In+1 is the (n + 1)-dimensional identity matrix. Thus,

Cd = X ′
2X2 − 2−(n−p)(X ′

1X2)
′(X ′

1X2).
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It is important to note that, even though the (M,S) criterion defined here is based on

model (2) and only for two-level designs, trace(Cd) and trace(C2
d) are actually independent

of the choice of orthonormal contrasts [see Remark 2.3.1 of Dey and Mukerjee (1999)].

Therefore, the (M,S) criterion can be applied to multi-level symmetrical and asymmetrical

designs as well. Cheng, Deng, and Tang (2002) and Mandal and Mukerjee (2004) studied

(M,S)-optimality in factorial designs. They considered the joint information on β1 and β2

while our focus is the conditional information on β2 given β1. The (M,S) criterion proposed

in this paper is especially useful in the scenario in which main effects are of primary interest

but the experimenter would like to have as much information on 2fi’s as possible under the

assumption that three-factor and higher-order interactions are negligible. As is shown in

the following, trace(Cd) and trace(C2
d) contain not only the contamination information of

2fi’s on main effects but information on 2fi’s themselves as well.

2. (M,S)-Optimality in Selecting Regular Designs

Minimum aberration has been a popular criterion in choosing regular fractional factorial

designs. The purpose of this section is to explore the detailed relationship between (M,S)

and MA criteria when selecting regular designs of two-level factors. Jacroux (2004) briefly

discussed the connection between the two criteria for regular designs of resolution III or

higher, but his formulation only holds for designs of resolution IV or resolution III designs

in which each main effect is aliased with exactly one 2fi.

For a 2n−p regular fractional factorial design, say d, let Wi(d) be the number of words

of length i in the defining relation. Then W (d) = (W1(d), · · · ,Wn(d)) is the wordlength

pattern of design d. For any two designs d1 and d2, let l be the smallest integer such that

Wl(d1) 6= Wl(d2), then d1 is said to have less aberration than d2 if Wl(d1) < Wl(d2). If no

design has less aberration than d1, then d1 is called the MA design.

In a 2n−p design d of resolution III or higher, following Cheng, Steinberg, and Sun

(1999), 2p − 1 of the 2n − 1 factorial effects appear in the defining relation. The remaining

2n − 2p effects are partitioned into g = 2n−p − 1 alias sets each of size 2p, where n of the g

alias sets contain main effects (one each). Let f = g−n and the f alias sets not containing

main effects be M1, · · · , Mf . Also let the n alias sets containing main effects be Mf+1, · · · ,
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Mg. For 1 ≤ i ≤ g, let mi(d) be the number of 2fi’s in Mi. Then

g
∑

i=f+1

mi(d) = 3W3(d)

because each three-letter word in the defining relation generates three 2fi’s that are aliased

with (the corresponding) main effects. Note that the diagonal element of (X ′
1X2)

′(X ′
1X2) is

4n−p if the 2fi is aliased with a main effect, and zero otherwise (since the design resolution

is at least III, there cannot be two main effects aliased with the same 2fi). The off-diagonal

element is zero if the two 2fi’s are not aliased with a main effect and 4n−p if they are both

aliased with the same main effect. Similarly, the (i, i)th diagonal element of X ′
2X2 is 2n−p,

and the (i, j)th off-diagonal element is zero if the ith and jth 2fi’s are not aliased with

each other and 2n−p if they are. Hence, trace(Cd) is equal to the number of 2fi’s that are

not aliased with main effects (i.e., 2fi’s in M1, · · · , Mf ) multiplied by 2n−p, and

trace(C2
d) =

[

f
∑

i=1

mi(d) + 2 ×

f
∑

i=1

(

mi(d)

2

)

]

4n−p = 4n−p

f
∑

i=1

mi(d)2.

Recall that (equation (2.2) in Cheng, Steinberg, and Sun, 1999)

6W4(d) =

g
∑

i=1

mi(d)2 −

(

n

2

)

.

Thus

trace(C2
d) =

[

(

n

2

)

−

g
∑

i=f+1

mi(d)2 + 6W4(d)

]

4n−p. (3)

Therefore, we have the following theorem.

Theorem 1. For any regular two-level design d of resolution III or higher,

1. trace(Cd) = 2n−p
∑f

i=1 mi(d) = 2n−p
[(

n

2

)

− 3W3(d)
]

.

2. trace(C2
d) = 4n−p

∑f

i=1 mi(d)2 = 4n−p
[

(

n

2

)

−
∑g

i=f+1 mi(d)2 + 6W4(d)
]

.

Theorem 1 shows that the (M,S) criterion selects the design that maximizes
∑f

i=1 mi(d)

(or, equivalently, minimizes W3(d)) first and then minimizes
∑f

i=1 mi(d)2, while the MA

criterion minimizes W3(d) first and then minimizes W4(d) (or, equivalently, minimizes
∑g

i=1 mi(d)2). The following example shows that these two criteria are not equivalent

when used in design selection.
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Example 1. Consider the following two 211−6
III designs.

d1 : F = AB, G = AC, H = AD, J = BE, K = CDE, L = ABCDE

d2 : F = AB, G = AC, H = AD, J = AE, K = BCDE, L = ABCDE

It can be shown that W (d1) = (0, 0, 5, 9, 17, 19, 7, 2, 3, 1) and W (d2) = (0, 0, 5, 10, 16, 16, 10, 5, 1).

Let m(d) = (m1(d), · · · ,m31(d)). Then

m(d1) = (3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1; 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1),

m(d2) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2; 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

trace(Cd1
) =

∑20
i=1 mi(d1) = 40 × 211−6 = trace(Cd2

) =
∑20

i=1 mi(d2),

trace(C2
d1

) =
∑20

i=1 mi(d1)
2 = 84 × 411−6, trace(C2

d2
) =

∑20
i=1 mi(d2)

2 = 80 × 411−6,
∑31

i=1 mi(d1)
2 = 109, and

∑31
i=1 mi(d2)

2 = 115.

Therefore, the MA criterion will choose d1 over d2 while the (M,S) criterion selects d2 over

d1. Neither of these designs is optimal by either criterion, but the difference between them

illustrates the nature of the MA and (M,S) criteria. The MA criterion favors designs that

treat all factors equally by making the alias chains of low order effects roughly equal in

length. In contrast, the (M,S) criterion seems to put some 2fi’s into longer alias chains with

main effects in order to keep the uniformity of 2fi’s distribution across the alias chains that

don’t contain main effects. Note that, in this example, both d1 and d2 have maximized

Jacroux’s E (the number of estimable contrasts that contain at least one main effect or

2fi) at 31.

One interesting question is whether (M,S)-optimal designs are also MA designs and vice

versa. For designs of resolution IV or higher, it is easy to see that maximizing trace(Cd) and

then minimizing trace(C2
d) is equivalent to minimizing W3(d) and then minimizing W4(d).

Therefore, MA designs must be (M,S)-optimal. However, an (M,S)-optimal design is not

necessarily an MA design. For example, designs 26−1
V I and 26−1

V with defining relations

6 = 12345 and 6 = 1234 have word-length patterns (0, 0, 0, 0, 0, 1) and (0, 0, 0, 0, 1, 0)

respectively. Both designs have minimum W3(d) and W4(d), so they are (M,S)-optimal.

However, it is obvious that 26−1
V is not an MA design. Actually, 26−1

V is the smallest

(M,S)-optimal design that doesn’t have minimum aberration. The major reason is that

the current setting of (M,S)-optimality doesn’t cover information on three-factor or higher-

order interactions while the MA criterion considers interactions of any order. As is pointed

out above, three-factor or higher-order interactions could be included in β2 if all main effects

and 2fi’s are parameters of primary interest, β1.
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Recall that a 2n−k design has resolution III if 2n−k−1 +1 ≤ n ≤ 2n−k − 1. For designs of

8, 16, and 32 runs with more than 4, 8, and 16 factors, respectively, a complete computer

search using the algorithm in Xu (2002) shows that the (M,S)-optimal design is unique

up to isomorphism (two designs are isomorphic if one can be obtained from the other by

relabeling factors, reordering runs or switching the levels of factors), and it is the MA

design. For designs of 64 runs with more than 32 factors, it is not easy to identify all the

nonisomorphic designs. The concept of complementary designs proposed by Tang and Wu

(1996) could be used to reduce the complexity of the computation.

Let Hn−k be the collection of all 2n−k −1 combinations generated by n−k independent

columns, then for any design d, the complementary design, say d̄, consists of the remaining

2n−k − 1 − n columns in Hn−k. Tang and Wu show that W3(d) = constant − W3(d̄) and

W4(d) = constant + W3(d̄) + W4(d̄). Therefore, to find all nonisomorphic resolution III

designs of 64 runs with minimum W3(d), we only need to find their complementary designs

d̄ with the maximum W3(d̄). Since these complementary designs contain 1 to 31 factors,

we only need to find nonisomorphic designs with the maximum W3(d̄) in H5 (Chen and

Hedayat, 1996). These complementary designs (only generators are given and the five

independent columns are 1, 2, 3, 4, and 5) are listed in Table 1.

Chen and Hedayat (1996) listed nonisomorphic complementary designs of 1 to 15 factors

with the maximum W3(d̄) and Table 1 has complementary designs of 16 to 31 factors and

their wordlength pattern up to five-letter words (M10, M∗
10, M11, and M∗

11 are from Chen

and Hedayat, 1996 and are included for demonstration later). For example, M25 stands for

the complementary design with 25 factors and the maximum W3(d̄) = 80, the minimum

W4(d̄) = 435 and the minimum W5(d̄) = 1622 (if two designs have the same W3(d̄) and

W4(d̄)). M∗1
25 to M∗3

25 are other nonisomorphic designs with the maximum W3(d̄) = 80. It

is clear from the list of nonisomorphic complementary designs that there is only one design

up to isomorphism with maximum W3(d̄) for 1 to 9, 12 to 18, 28 to 31 factors. Hence,

there is only one design up to isomorphism having minimum W3(d) with 62 to 54, 51 to

45, and 35 to 32 factors. Therefore, (M,S)-optimal and MA designs are the same in these

cases. For other cases where there are more than one nonisomorphic design, trace(Cd)

and trace(C2
d) are given in Table 2. Table 2 shows that (M,S)-optimal design is unique up

to isomorphism except for designs with 37 and 38 factors. There are two (M,S)-optimal

designs with 37 factors and they are the complementary designs of M26 and M∗1
26 (denoted
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by H6 \ M26 and H6 \ M∗1
26 ). By checking wordlength patterns of M26 and M∗1

26 , we know

that H6 \ M26 is MA and H6 \ M∗1
26 is not. Similarly, there are two (M,S)-optimal designs

with 38 factors and they are the complementary designs of M25 and M∗1
25 , where H6 \M25

is MA and H6 \ M∗1
25 is not. Therefore, (M,S)-optimal designs are not unique and not

necessarily MA. However, all MA designs with 64 runs are (M,S)-optimal. For resolution

III designs with more than 64 runs, whether an MA design is (M,S)-optimal is still under

investigation.

In general, the (M,S) and MA criteria are different. The former compares designs based

on the aliasing of 2fi’s with main effects as well as among 2fi’s themselves, while the latter

also factors in higher-order interactions. The MA criterion distributes the 2fi’s uniformly

across alias sets including main effects as well as those containing only 2fi’s, while the

(M,S) criterion distributes 2fi’s evenly across only the alias sets that do not contain any

main effects. It is important to notice that the (M,S) criterion is equivalent to maximizing

the first two components of the maximum estimation capacity, i.e., E1(d) and E2(d), in

Cheng, Steinberg, and Sun (1999). An (M,S)-optimal design usually has large estimation

capacity, i.e., it accommodates large numbers of models containing all the main effects and

a certain number of 2fi’s.

In addition to the ease of computation, the (M,S) criterion can be naturally carried

over from regular designs to nonregular designs. In contrast, the MA criterion has to be

modified. Next, the (M,S) criterion will be used to study nonregular designs, and relations

between the (M,S) and minimum G2-aberration criteria are also discussed.

3. (M,S)-Optimality for Nonregular Designs

In this section some properties of trace(Cd) and trace(C2
d) when used in selecting non-

regular designs are studied. For a design d of N runs with n factors, where each row of

the design matrix corresponds to a run and each column to a factor, let s = {c1, . . . , ck}

be any k-subset with 1 ≤ k ≤ n, define

jk(s) =
N

∑

i=1

ci1 · · · cik, Jk(s) = |jk(s)|

where cij is the ith component of column cj. The Jk(s) values are called the J-characteristics

of a design in Tang and Deng (1999). For an orthogonal design, J1(s) = J2(s) = 0. A

design is regular if and only if Jk(s) = 0 or N for all k. If Jk(s) = N , the k columns
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Table 1: Nonisomorphic designs with the maximum W3(d̄)

Design Design Generators (W3, W4, W5)

M16 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234 (35, 105, 168)

M17 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234, 12345 (36, 112, 196)

M18 12, 13, 14, 23, 24, 34, 123, 124, 134, 135, 234, 1234, 12345 (38, 126, 252)

M19 12, 13, 14, 23, 24, 34, 123, 124, 134, 135, 234, 245, 1234, 12345 (41, 148, 336)

M∗
19 12, 13, 14, 23, 24, 34, 123, 124, 134, 135, 145, 234, 245, 1234,

12345 (41, 147, 337)

M20 12, 13, 14, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234, 1234,

2345 (45, 175, 453)

M∗
20 12, 13, 14, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234, 1234,

12345 (45, 176, 452)

M21 12, 13, 15, 23, 24, 25, 35, 123, 124, 134, 135, 234, 245, 1234,

12345 (50, 205, 592)

M∗1
21 12, 13, 14, 15, 23, 24, 25, 34, 123, 124, 134, 135, 145, 234,

1234, 12345 (50, 210, 603)

M∗2
21 12, 13, 14, 15, 23, 25, 35, 123, 125, 135, 145, 235, 1234, 1235,

1245, 2345 (50, 211, 602)

M∗3
21 12, 13, 14, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234, 235,

1234, 12345 (50, 213, 600)

M22 12, 13, 14, 15, 24, 25, 45, 123, 124, 134, 135, 234, 245, 1234,

1235, 12345 (56, 251, 784)

M∗1
22 12, 14, 15, 23, 24, 25, 45, 123, 124, 125, 134, 135, 145, 234, 235,

1234, 12345 (56, 252, 784)

M∗2
22 12, 13, 14, 15, 23, 24, 34, 125, 135, 145, 234, 1234, 1235, 1245,

1345, 2345, 12345 (56, 254, 789)

M∗3
22 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234, 235,

1234, 12345 (56, 255, 788)

M∗4
22 12, 13, 14, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234, 235, 245,

1234, 12345 (56, 259, 784)
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Table 1: Nonisomophic designs with the maximum W3(d̄) (continued)

Design Design Generators (W3, W4, W5)

M23 12, 13, 14, 15, 23, 34, 35, 45, 123, 124, 125, 134, 135,

145, 234, 235, 1345, 12345 (63, 304, 1015)

M∗1
23 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135,

145, 234, 235, 1234, 1345, 12345 (63, 306, 1017)

M∗2
23 12, 13, 14, 15, 23, 24, 34, 123, 124, 134, 135, 234, 245,

1234, 1235, 1245, 1345, 12345 (63, 307, 1016)

M∗3
23 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145,

234, 235, 245, 1234, 12345 (63, 308, 1015)

M∗4
23 12, 13, 14, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234,

235, 245, 345, 1234, 12345 (63, 315, 1008)

M24 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 234,

235, 245, 1235, 1245, 1345, 12345 (71, 365, 1292)

M∗1
24 12, 13, 14, 15, 23, 25, 35, 123, 124, 125, 134, 135, 234

, 235, 245, 1235, 1245, 1345, 12345 (71, 366, 1293)

M∗2
24 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145,

234, 235, 245, 1234, 1235, 12345 (71, 367, 1292)

M∗3
24 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145,

234, 235, 245, 345, 1234, 12345 (71, 371, 1288)

M25 12, 13, 14, 15, 23, 24, 25, 34, 123, 124, 125, 134, 135, 234,

235, 245, 1235, 1245, 1345, 12345 (80, 435, 1622)

M∗1
25 12, 13, 14, 15, 23, 24, 25, 35, 123, 124, 125, 134, 135,

234, 235, 245, 1235, 1245, 1345, 12345 (80, 435, 1623)

M∗2
25 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135,

234, 245, 345, 1235, 1245, 1345, 12345 (80, 436, 1622)

M∗3
25 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145,

234, 235, 245, 345, 1234, 1235, 12345 (80, 438, 1620)
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Table 1: Nonisomorphic designs with the maximum W3(d̄) (continued)

Design Design Generators (W3, W4, W5)

M26 12, 13, 14, 15, 23, 24, 25, 45, 123, 124, 125, 134, 135, 145,

234, 235, 245, 345, 1234, 1235, 12345 (90, 515, 2012)

M∗1
26 12, 13, 14, 15, 23, 24, 25, 34, 123, 124, 125, 134, 135, 234,

245, 345, 1234, 1235, 1245, 1345, 12345 (90, 515, 2013)

M∗2
26 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234,

235, 245, 345, 1234, 1235, 1245, 12345 (90, 516, 2012)

M27 12, 13, 14, 15, 23, 24, 25, 34, 123, 124, 125, 134, 135, 145, 234,

235, 245, 345, 1234, 1235, 2345, 12345 (101, 605, 2473)

M∗
27 12, 13, 14, 15, 23, 24, 34, 123, 124, 125, 134, 135, 145, 234,

235, 245, 345, 1234, 1235, 1245, 1345, 12345 (101, 606, 2472)

M28 12, 13, 14, 15, 23, 24, 25, 34, 123, 124, 125, 134, 135, 145, 234,

235, 245, 345, 1234, 1235, 1245, 1345, 12345 (113, 706, 3012)

M29 12, 13, 14, 15, 23, 24, 25, 34, 123, 124, 125, 134, 135, 145,

234, 235, 245, 345, 1234, 1235, 1245, 1345, 2345, 12345 (126, 819, 3640)

M30 12, 13, 14, 15, 23, 24, 25, 34, 35, 123, 124, 125, 134, 135,

145, 234, 235, 245, 345, 1234, 1235, 1245, 1345, 2345, 12345 (140, 945, 4368)

M31 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124, 125, 134, 135,

145, 234, 235, 245, 345, 1234, 1235, 1245, 1345, 2345, 12345 (155, 1085, 5028)

M10 1, 2, 3, 4, 1234, 12, 23, 34, 123, 234 (10, 15, 12)

M∗
10 1, 2, 3, 4, 1234, 12, 23, 13, 14, 123 (10, 16, 12)

M11 1, 2, 3, 4, 1234, 12, 13, 14, 23, 24, 34 (13, 25, 25)

M∗
11 1, 2, 3, 4, 1234, 14, 23, 24, 34, 234, 123 (13, 26, 24)
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Table 2: Trace(Cd) and trace(C2
d) of 64-run designs

No. of Factors Nonisomorphic Design trace(Cd) trace(C2
d)

36 H6 \ M27 438 × 64 7110 × 642

36 H6 \ M∗
27 438 × 64 7116 × 642

37 H6 \ M26 426 × 64 6986 × 642

37 H6 \ M∗1
26 426 × 64 6986 × 642

37 H6 \ M∗2
26 426 × 64 6992 × 642

38 H6 \ M25 415 × 64 6895 × 642

38 H6 \ M∗1
25 415 × 64 6895 × 642

38 H6 \ M∗2
25 415 × 64 6901 × 642

38 H6 \ M∗3
25 415 × 64 6913 × 642

39 H6 \ M24 405 × 64 6843 × 642

39 H6 \ M∗1
24 405 × 64 6849 × 642

39 H6 \ M∗2
24 405 × 64 6855 × 642

39 H6 \ M∗3
24 405 × 64 6879 × 642

40 H6 \ M23 396 × 64 6830 × 642

40 H6 \ M∗1
23 396 × 64 6842 × 642

40 H6 \ M∗2
23 396 × 64 6848 × 642

40 H6 \ M∗3
23 396 × 64 6854 × 642

40 H6 \ M∗4
23 396 × 64 6896 × 642

41 H6 \ M22 388 × 64 6856 × 642

41 H6 \ M∗1
22 388 × 64 6862 × 642

41 H6 \ M∗2
22 388 × 64 6874 × 642

41 H6 \ M∗3
22 388 × 64 6880 × 642

41 H6 \ M∗1
22 388 × 64 6904 × 642

42 H6 \ M21 381 × 64 6921 × 642

42 H6 \ M∗1
21 381 × 64 6951 × 642

42 H6 \ M∗2
21 381 × 64 6957 × 642

42 H6 \ M∗3
21 381 × 64 6969 × 642

52 H6 \ M11 270 × 64 6630 × 642

52 H6 \ M∗
11 270 × 64 6636 × 642

53 H6 \ M10 250 × 64 6250 × 642

53 H6 \ M∗
10 250 × 64 6256 × 642
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in s form a word of length k in the defining relation of regular designs. For nonregular

designs, 0 ≤ Jk(s) ≤ N . Deng and Tang (1999) introduced a generalized minimum

aberration (GMA) criterion based on the confounding frequency vector (CFV) that consists

of the frequencies of Jk(s). Let fkj be the frequency of k column combinations that give

Jk(s) = 4(t + 1 − j) for j = 1, . . . , t in a Hadamard matrix with N = 4t runs. Then the

CFV is

CFV = [(f31, . . . , f3t), (f41, . . . , f4t), . . . , (fn1, . . . , fnt)].

The GMA criterion minimizes the components of CFV sequentially, i.e, a GMA design

has the lowest frequency of the largest Jk(s) values. They proved that Jk(s) must be a

multiple of 4 for orthogonal first-order designs. The quantity Jk(s)/N could be interpreted

as the extent of aliasing among k columns. In particular, J3(s)/N = 0 (or J3(s)/N = 1)

suggests that there is no (or complete) aliasing between the main effect of one factor in

s and the 2fi of two other factors; J4(s)/N = 0 (or J4(s)/N = 1) indicates that there is

no (or complete) aliasing between two 2fi’s of the four factors in s. The values of J3(s)

and J4(s) are closely related to N. For example, Deng and Tang (2002) pointed out that if

N is a multiple of 8, so are J3(s) and J4(s). As with regular designs where trace(Cd) and

trace(C2
d) depend on W3(d) and W4(d), Theorem 2 shows that trace(Cd) and trace(C2

d) are

determined by j3(s) and j4(s).

Theorem 2. For any two-level orthogonal design d with N runs and n factors,

1. trace(Cd) = N
(

n

2

)

− 3
N

∑

1≤i<k<l≤n j2
3(cickcl).

2. trace(C2
d) =

∑

1≤i<k≤n

[

N − 1
N

∑

1≤i<k≤n,h6=i,k j2
3(cickch)

]2

+
∑

1≤i<k≤n,1≤l<m≤n;(i,k) 6=(l,m)

[

j4(cickclcm) −
1

N

∑

h6=i,k,l,m

j3(cickch)j3(clcmch)

]2

.

Proof. Note that the diagonal elements of X ′
2X2 are N ’s, the nonzero off-diagonal elements

of X ′
1X2 are j3(s)’s with each one appearing three times, and trace((X ′

1X2)
′X ′

1X2) is the

sum of squares of the elements in X ′
1X2. For example, the element corresponding to main

effect 1 and 2fi 23 in X ′
1X2 is j3(c1c2c3). It is straightforward to show that

trace(Cd) = N

(

n

2

)

−
3

N

∑

1≤i<k<l≤n

j2
3(cickcl).

12



For trace(C2
d), note that the off-diagonal elements of X ′

2X2 are either zero (j2(s) = 0) or

j4(s). The diagonal element of (X ′
1X2)

′X ′
1X2 is the sums of squares of j3(s) containing two

factors in the corresponding 2fi. For instance, the diagonal element at the position of 2fi

23 is 1
N

∑

h 6=2,3 j2
3(c2c3ch). The off-diagonal element is the sum of all products of j3(s1) and

j3(s2) where s1 and s2 contain two factors from each 2fi and a main effect that doesn’t

appear in both 2fi’s. For example, the off-diagonal element at the position of 2fi’s 12 and

34 is
∑n

h=5 j3(c1c2ch)j3(c3c4ch). ♦

Tang and Deng (1999) proposed the minimum G2-aberration criterion as follows. Let

Bk(d) = 1
N2

∑

|s|=k

J2
k (s). For two designs d1 and d2, let r be the smallest integer such that

Br(d1) 6= Br(d2). Design d1 has less G2-aberration than d2 if Br(d1) < Br(d2). If no

design has less G2-aberration than d1, then d1 is said to have minimum G2-aberration.

Theorem 2 shows that maximizing trace(Cd) is equivalent to minimizing B3(d). However,

minimizing trace(C2
d) is more complicated than simply minimizing B4(d). If all j3(s)’s are

zero (for example, d is an orthogonal array of strength three), then minimizing trace(C2
d) is

equivalent to minimizing B4(d). Direct calculation shows that all minimum G2-aberration

designs in Table 2 of Tang and Deng (1999) are (M,S)-optimal and all (M,S)-optimal

designs from H16.III have minimum G2-aberration. It is not known in general whether

the (M,S) criterion is equivalent to the minimum G2-aberration criterion for nonregular

designs. Moreover, for regular designs, trace(Cd) and trace(C2
d) are multiples of N and

N2, but this is not generally true for nonregular designs (examples are given in Table 6).

If d is a saturated orthogonal design, X1(d)X ′
1(d) = X ′

1(d)X1(d) = NIN , thus Cd = 0

and trace(Cd)=trace(C2
d)=0. Therefore, all saturated orthogonal designs are (M,S) equiv-

alent. However, saturated orthogonal designs of N runs are not GMA equivalent (Xu and

Deng, 2002). Theorem 3 links trace(Cd) with J-characteristics for projections of saturated

orthogonal arrays.

Theorem 3. Let d1 be an m-dimensional projection from a saturated orthogonal array d

of N runs by deleting columns a1, · · · , ag, where g = N − m − 1 ≥ 1. Then

trace(Cd1
) =

1

N
[

∑

1≤i<k≤m

j2
3(cicka1) + · · · +

∑

1≤i<k≤m

j2
3(cickag)] (4)

=
g

2N
[mN2 −

m
∑

i=1

j2
3(a1a2ci) − · · · −

m
∑

i=1

j2
3(a1agci)] (5)
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Proof. Let X1(d) be the main effect matrix of design d in the model, then X1(d)X ′
1(d) =

X ′
1(d)X1(d) = NIN . Without loss of generality, assume the first m factors are in projection

d1, then X1(d) = [X1(d1), a1, . . . , ag], where a1, a2, . . . , ag stands for main effects of the g

factors. Note that

IN =
1

N
[X1(d1), a1, . . . , al][X1(d1), a1, . . . , ag]

′ =
1

N
X1(d1)X

′
1(d1) +

1

N
a1a

′
1 + · · · +

1

N
aga

′
g.

Recall that

Cd1
= X ′

2(d1)X2(d1) −
1

N
(X ′

1(d1)X2(d1))
′(X ′

1(d1)X2(d1))

= X ′
2(d1)[IN −

1

N
X1(d1)X

′
1(d1)]X2(d1)

=
1

N
X ′

2(d1)[a1a
′
1 + · · · + aga

′
g]X

′
2(d1),

where X2(d1) is the coefficient matrix of 2fi’s in projection d1. Therefore

trace(Cd) =
1

N
[trace([X ′

2(d1)a1][a
′
1X2(d1)]) + · · · + trace([X ′

2(d1)ag][a
′
gX2(d1)])

=
1

N
{[a′

1X2(d1)][X
′
2(d1)a1] + · · · + [a′

gX2(d1)][X
′
2(d1)ag]}

=
1

N
[

∑

1≤i<k≤m

j2
3(cicka1) + · · · +

∑

1≤i<k≤m

j2
3(cickag)].

To show equation (5), consider Wi = X ′
1(d1)D(ai)X1(d1) for i = 1, 2, . . . , g, where D(ai) is

the diagonal matrix with diagonal elements equal to the elements of ai. Then it is easy to

see that the diagonal elements of Wi are zeros and its off-diagonal element wkl = j3(ckclai)

for 1 ≤ k < l ≤ m. Therefore,
∑

1≤k<l≤m j2
3(ckclai) is the half of the sum of squares of all

off-diagonal elements in Wi. Note that the sum of squares of all off-diagonal elements in

Wi is trace(WiW
′
i ). Let’s calculate trace(W1W

′
1) first.

trace(W1W
′
1) = trace(X ′

1(d1)D(a1)X1(d1)X
′
1(d1)D(a1)X1(d1))

= trace(X ′
1(d1)D(a1)[NIN − a1a

′
1 − · · · − aga

′
g]D(a1)X1(d1))

= trace(NX ′
1(d1)D(a1)D(a1)X1(d1))

− trace(X ′
1(d1)D(a1)a1a

′
1D(a)X1(d1))

− · · · − trace(X ′
1(d1)D(ag)aga

′
gD(a)X1(d1))

= trace(NX ′
1(d1)X1(d1)) − trace(X ′

1(d1)1N1′
N

X1(d1))
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− trace(X ′
1(d1)D(a1)a2a

′
2D(a1)X1(d1)) − · · ·

− trace(X ′
1(d1)D(a1)aga

′
gD(a1)X1(d1))

= N2m −

m
∑

i=1

j2
3(a1a2ci) − · · · −

m
∑

i=1

j2
3(a1agci)

where 1N is the N ×1 vector with elements 1, D(a1)a1 = 1N and D(a1)ai is the Hadamard

product of a1 and ai for i = 2, 3, . . . , g.

Similarly, for h = 2, 3, . . . , g,

trace(WhW
′
h) = N2m −

m
∑

i=1

j2
3(a1a2ci) − · · · −

m
∑

i=1

j2
3(a1ah−1ci)

−
m

∑

i=1

j2
3(a1ah+1ci) − · · · −

m
∑

i=1

j2
3(a1agci).

Therefore,

trace(C2
d) =

g

2N
[mN2 −

m
∑

i=1

j2
3(a1a2ci) − · · · −

m
∑

i=1

j2
3(a1agci)].

♦

Equation (4) in theorem 3 should be applied when m ≤ (N − 1)/2 and equation (5) is

applied when m ≥ (N − 1)/2. In particular,

Corollary 1. Let d1 be an (N − 2)-dimensional projection from a saturated orthogonal

array d and X1(d1) and X2(d1) be its main effect and 2fi model matrices. Then

1. trace(Cd1
) = 1

N

∑

1≤i<k≤n−2 j2
3(cicka) = N(N−2)

2
, where a is the factor that is not in

the projection.

2. trace(C2
d1

) = [trace(Cd1
)]2

3. If d is the 12-run Plackett-Burman design, then for any m-dimensional projection d1

trace(Cd1
) = 12

(

m

2

)

− 4
(

m

3

)

.

Proof. Let X1(d) be the main effect matrix of design d in the model. Without loss of

generality, assume the first n − 2 factors are in projection d1, then X1(d) = [X1(d1), a],
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where a is the main effect of the (n− 1)th factor. Here, g = 1 and m = N − 2. Therefore,

trace(Cd) = N(N−2)
2

and (1) holds. To obtain (2), note that

trace(C2
d) =

1

N2
trace([X ′

2(d1)a][a′X2(d1)][X
′
2(d1)a][a′X2(d1)])

=
1

N2
[a′X2(d1)X

′
2(d1)a]trace([X ′

2(d1)a][a′X2(d1)])

=
1

N2
[a′X2(d1)][X

′
2(d1)a]2 = [trace(Cd)]

2.

As for (3), Lin and Draper (1992) showed that any 3-dimensional projection has one copy

of 23 and one copy of 23−1. Hence, j3(s) = ±4 for any three columns and the result is

obtained by directly plugging j3(s) in (1) of Theorem 2. ♦

4. Projective Properties of Nonregular Designs

In this section, the (M,S) criterion is used to study the projective properties of non-

regular designs of 12, 16, and 20 runs. Since all these designs are saturated, they are

indistinguishable by the (M,S) criterion, their trace(Cd)’s and trace(C2
d)’s are zero. In-

stead, the (M,S) criterion is applied to projections onto different dimensions. Projections

will be classified by their trace(Cd)’s and trace(C2
d)’s (called (M,S) classifier, hereafter)

and (M,S)-optimal projections are selected from each dimension. There has been a lot of

research on projections using the generalized minimum aberration (GMA) criteria (Deng

and Tang, 1999 and Xu and Wu, 2001). The (M,S)-optimal projections will be compared

with the GMA projections to show the difference between the two criteria in projections

of nonregular designs.

4.1. Plackett-Burman Design of 12 Runs

As is well known, there is only one projection up to isomorphism for 3 to 11 factors

(except for 5 and 6 factors) in the 12-run Plackett-Burman design generated by {1, 1, −1,

1, 1, 1, −1, −1, −1, 1, −1}. For projections onto 5 factors, the (M,S)-optimal projections

(396 of the total 462) have trace(Cd) = 80.00 and trace(C2
d) = 1208.89. The projection

consisting of columns 1, 2, 3, 4, and 5 is an example. It has two mirror runs, 7 and 10

and it is also the GMA projection. The other 66 projections have trace(Cd) = 80.00 and

trace(C2
d) = 1280. The projection consisting of columns 1, 2, 3, 4, and 10 is one and it has

two identical runs, 3 and 11. For projections onto 6 factors, the (M,S)-optimal projections
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(again 396 out of 462) have trace(Cd) = 100.00 and trace(C2
d) = 2035.56. The projection

consisting of columns 1, 2, 3, 4, 5, and 6 is (M,S)-optimal. The other 66 projections

have trace(Cd) = 100.00 and trace(C2
d) = 2320.00. The projection consisting of columns

1, 2, 3, 4, 5, and 7, which is the GMA projection, is an example and has two mirror

runs, 7 and 11. Hence, a GMA projection is not necessarily (M,S)-optimal. Li and Wang

(2004) showed that both (M,S)-optimal projections onto five and six factors have maximum

estimation capacity among all five and six dimensional projections respectively, while the

GMA projection onto six factors doesn’t have maximum estimation capacity.

4.2. Hall’s Designs of 16 Runs

According to Hall (1961), there are exactly five nonisomorphic Hadamard matrices

of order 16, labeled as H16.I, H16.II, H16.III, H16.IV, and H16.V in Deng and Tang

(2002), where H16.I is a regular design. For 3 ≤ m ≤ 14, a complete computer search

of
(

15
m

)

projections was done for each of Hall’s designs. Table 3 lists the (M,S)-optimal

projections and their frequencies (the numbers in parentheses are the total numbers of

projections in each design, {}c stands for the complement). For example, the (M,S)-

optimal projections onto six factors have trace(Cd) = 240 and trace(C2
d) = 8448. The

frequencies of 6-dimensional (M,S)-optimal projections among 5005 projections in each

of H16.I, H16.II, H16.III, H16.IV and H16.V are 420, 120, 46, 21, and 28, respectively.

The projection consisting of columns 1, 2, 3, 4, 6, and 8 in H16.I is (M,S)-optimal. The

projection is a regular MA design of resolution IV with defining relations and 6 = 124 and

8 = 123. All columns selected in Table 3 are from H16.I.

According to the frequencies of (M,S)-optimal projection in each dimension, regular

design H16.I has the most (M,S)-optimal projections, H16.II ranks second, H16.III third,

H16.V fourth, and H16.IV fifth. Design H16.IV doesn’t have any (M,S)-optimal projections

onto 5, 7, 8, and 9 factors in Table 3. The best (in terms of the (M,S) criterion) projections

onto 5, 7, 8, and 9 factors for H16.IV have trace(Cd)’s 160, 288, 352, 336, and trace(C2
d)’s

4096, 11776, 19456, 19200, respectively. Similarly, H16.V does’t have any (M,S)-optimal

projections onto 5 factors, and the best projections in H16.V have trace(Cd) = 160 and

trace(C2
d) = 4096. Even though the regular design H16.I has fewer classes than the nonreg-

ular designs (Table 4), it has the largest frequencies of (M,S)-optimal projections. Since

factorial effects in (M,S)-optimal projections have less aliasing than those in others, it is
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Table 3: (M,S)-optimal projections in 16-run Hall’s designs

No. of Trace Trace Columns

Factors of Cd of C2
d H16.I H16.II H16.III H16.IV H16.V Selected

3(455) 48 768 420 372 348 336 336 1, 2, 3

4(1365) 96 1536 840 600 480 420 420 1, 2, 3, 4

5(3003) 160 2560 168 72 24 0 0 1, 2, 3, 4, 7

6(5005) 240 8448 420 120 46 21 28 1, 2, 3, 4, 6, 8

7(6435) 336 16128 120 24 8 0 8 1, 2, 3, 4, 6, 8, 9

8(6435) 448 28672 15 3 1 0 1 1, 2, 3, 4, 6, 8, 9, 12

9(5005) 384 24576 105 21 7 0 7 {7, 10, 11, 13, 14}c

10(3003) 336 22784 315 99 39 21 21 {10, 11, 13, 14}c

11(1365) 304 23296 420 228 132 84 84 {11, 13, 14}c

12(455) 288 27648 35 19 11 7 7 {11, 14}c

13(105) 192 18432 105 105 105 105 105 any 13 columns

14(15) 112 12544 15 15 15 15 15 any 14 columns

not surprising to see that the regular design H16.I has the largest frequencies of (M,S)-

optimal projections because regular designs usually have less effect aliasing than nonregular

designs.

It is interesting to note that all (M,S)-optimal projections onto 3 to 8 factors in Table 3

are regular factorial designs because their values of J-characteristics are either 0 or 16.

Some of the (M,S)-optimal projections onto 9 to 14 factors are nonregular. In terms of

(M,S)-optimality, these nonregular designs are as good as their regular counterparts. For

example, the projection consisting of columns 4, 5, 6, 7, 8, 9, 10, 11, and 13 of H16.II is

a nonregular design because j3(c4c8c13) = 8. It has the same trace(Cd) and trace(C2
d) as

the (M,S)-optimal projection consisting of columns 1, 2, 3, 4, 5, 6, 8, 9, and 12 (which is

a regular design) in H16.I.

Deng and Tang (2002) used the GMA criterion to select and classify projections in the

five Hall’s designs. They also listed some GMA projections from Hall’s designs (Table 2 in

their paper). It is easy to check that all the GMA projections given there are (M,S)-optimal.
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However, not all (M,S)-optimal projections are GMA. For example, the 5-dimensional,

(M,S)-optimal projection consisting of columns 1, 2, 3, 4, and 7 in 16H.I has F3[16, 8] =

(1, 0) and F4[16, 8] = (0, 0). The GMA projection consisting of columns 8, 9, 13, 14, and

15 in 16H.I has F3[16, 8] = (0, 0) and F4[16, 8] = (0, 0). The difference between (M,S) and

GMA criteria lies in the fact that the CFV in GMA only uses Jk(s) to order fkj’s and

doesn’t take the magnitude of Jk(s) into consideration. On the other hand, the (M,S)

criterion considers both the magnitude and frequency of Jk(s). For Hadamard matrices

with N = 4t, Jk(s) = 4(t + 1 − j) and trace(Cd) = 4t
(

n

2

)

− 3
4t

∑t

j=1 f3j[4(t + 1 − j)]2.

Table 4 gives the numbers of nonisomorphic projections identified by the (M,S) classifier

as well as the total numbers of nonisomorphic projections for each dimension across the five

designs. The exact number of nonisomorphic projections (Sun and Wu, 1993) and Deng

and Tang’s results (where GMA-4 and GMA-5 total are the numbers of nonisomorphic

projections using GMA-4 and GMA-5 classifiers) are included for comparisons. It is evident

that, for 3 ≤ m ≤ 14, H16.III has more nonisomorphic projections than any other of Hall’s

designs. For m = 3, 4, 5, the (M,S) classifier can identify all the nonisomorphic projections.

For m ≥ 6, the numbers of nonisomorphic projections found by the (M,S) classifier are

less than the exact or GMA numbers. This is mainly because, as the number of factors

increases, the degrees of freedom used to capture information on main effects and 2fi’s are

decreased, and the (M,S) classifier becomes less powerful.

4.3. Hall’s Designs of 20 Runs

According to Hall (1965), there are three non-isomorphic Hadamard matrices of order

20, commonly called N, P, and Q. In particular, Q is equivalent to the 20-run Plackett-

Burman design. Designs N, P and Q are given in appendix C of Deng and Tang (2002). A

similar procedure could be applied in selecting and classifying projections of these designs.

Table 5 lists the numbers of nonisomorphic projections for m = 3, 4, . . . , 18. The (M,S)

classifier finds many more nonisomorphic projections than the GMA classifier in Deng and

Tang (2002) for projections onto 3 to 13 factors. For projections onto 14 or more factors,

due to insufficient degrees of freedom, the (M,S) classifier becomes less powerful but still

identifies as many nonisomorphic projections as the GMA classifier. Note that the number

of nonisomorphic projections identified by the (M,S) classifier is less than the total number

of nonisomorphic projections. For instance, Wang and Wu (1995) reported 59 projections
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Table 4: Numbers of nonisomorphic projections identified by the (M,S) classifier

Type\ m 3 4 5 6 7 8 9 10 11 12 13 14

H16.I 2 3 4 5 6 6 5 3 2 2 1 1

H16.II 3 5 10 15 18 17 13 8 4 3 1 1

H16.III 3 5 11 21 31 30 19 9 4 3 1 1

H16.IV 3 5 10 16 18 17 15 9 4 3 1 1

H16.V 3 5 10 17 23 22 16 9 4 3 1 1

Total 3 5 11 23 34 33 19 9 4 3 1 1

GMA-4 Total 3 5 11 26 50 69 74 71 52 31 18 10

GMA-5 Total 3 5 11 26 50 69 75 71 52 31 18 10

Sun and Wu (1993) 3 5 11 27 55 80 87 78 58 36 18 10

Table 5: Numbers of nonisomorphic projections identified by the (M,S) classifier

Type\ m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N 2 3 10 54 182 319 356 326 244 159 46 9 2 2 1 1

P 2 3 10 51 142 258 313 276 203 129 44 9 2 2 1 1

Q 2 3 9 47 133 215 261 244 169 118 39 8 2 2 1 1

GMA 2 3 10 34 51 81 125 125 80 51 34 10 3 2 1 1

onto six factors and Xu and Deng (2005) identified 2, 282 projections onto ten factors.

Table 6 lists the (M,S)-optimal projections and their proportions for each design.

For example, the (M,S)-optimal projections among all 3-dimensional projections have

trace(Cd) = 57.60 and trace(C2
d) = 1105.92; 912 out of 969 3-dimensional projections

in designs N, P or Q are (M,S)-optimal. Design N doesn’t have any (M,S)-optimal pro-

jections onto 8, 9, 10, and 11 factors. In terms of the (M,S) criterion, the best pro-

jections onto these numbers of factors have trace(Cd) = 425.00, 480.00, 535.20, 588.80,

and trace(C2
d) = 17909.76, 24130.56, 32384.64, 44554.24, respectively. Similarly, design Q

doesn’t have any (M,S)-optimal projections onto 8, 9, 10, 11, 12, and 13 factors and the

best projections onto these numbers of factors have trace(Cd) = 406.40, 480.00, 554.40,
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569.00, 580.80, 585.60, and trace(C2
d) = 16250.88, 24007.68, 35948.16, 40867.84, 48396.8,

57292.80, respectively. It is obvious that design P has the highest proportions of (M,S)-

optimal projections onto 8, 9, 10, 11, 12 and 13 factors while it has the lowest propor-

tions of (M,S)-optimal projections onto 5, 6, 7, and 14 factors. It is straightforward to

show that the GMA projections of 20 runs in Deng and Tang (2002, Table 4) are not all

(M,S)-optimal and the (M,S)-optimal projections are not GMA. For example, the GMA

projection consisting of columns 4, 8, 11, 13, 17, and 19 in design N has trace(Cd) = 252

and trace(C2
d) = 6631.04. It is not (M,S)-optimal because the (M,S)-optimal projections

have trace(Cd) = 252 and trace(C2
d) = 6569.60. The (M,S)-optimal projection consisting of

columns 1, 2, 3, 6, 8 and 11 of design N has F3[20, 12] = [0, 2], while the GMA projection

consisting of columns 4, 8, 11, 13, 17 and 19 has F3[20, 12] = [0, 0]. Since not every orthog-

onal array of 20 runs is a projection of designs N, P, and Q, the (M,S)-optimal projections

in Table 6 may not be optimal among all the orthogonal arrays. Our conclusions on the

relation between (M,S) and GMA only apply to projections of N, P and Q.

In order to compare the (M,S) criterion and the GMA as well as other model-dependent

efficiency criteria in Cheng, Deng and Tang (2002), we consider the ten nonisomorphic

projections of N, P, and Q onto five factors given by Deng, Li and Tang (2000). These

projections are labeled as 5.1 to 5.10 with the meaning that projection 5.i is the ith best

among the ten projections according to the GMA criterion. Table 7 lists the rankings under

different criteria where 1 is the best and 10 is the worst. Projection 5.2 is actually the

(M,S)-optimal projection onto five factors. Since ranks under Df vary slightly according

to the number of 2fi’s (denoted by f), ranks under D2 are recorded in Table 7. It is evident

from Table 7 that the (M,S)-ranking is consistent with rankings based on GMA, minimum

G2, Df , and S2
f , while there is only moderate consistency between (M,S) and estimation

capacity Ef because Ef doesn’t take efficiency into consideration. Nevertheless, the (M,S)-

optimal projection performs the best with respect to the estimation capacity criterion. An

interesting observation is that the minimum G2 projection 5.1 is not (M,S)-optimal and the

(M,S)-optimal projection 5.2 is not minimum G2. Since there are additional orthogonal

arrays with 20 runs and 5 factors that are not projections from N, P, and Q, it is not

clear whether projection 5.1 is minimum G2 and projection 5.2 is (M,S)-optimal among all

orthogonal arrays of this size. This issue is currently under investigation.
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Table 6: (M,S)-optimal projections in 20-run Hall’s designs

No. of Trace Trace Columns

Factors of Cd of C2
d N P Q Selected

3 57.60 1105.92 912
969

912
969

912
969

{1, 2, 3}

4 110.40 2142.72 2736
3876

2736
3876

2736
3876

{1, 2, 3, 6}

5 176.00 3655.68 1488
11628

1728
11628

1368
11628

{1, 2, 3, 6, 8}

6 252.00 6569.60 1248
27132

1008
27132

1368
27132

{1, 2, 3, 6, 8, 11}

7 336.00 11120.64 144
50388

72
50388

171
50388

{1, 2, 3, 4, 6, 11, 19}

8 425.60 17786.88 0
75582

36
75582

0
75582

{1, 2, 6, 8, 10, 11, 13, 15}

9 518.40 29757.44 0
92378

9
92378

0
92378

{1, 2, 3, 4, 8, 9, 13, 14, 18}

10 612.00 43873.92 0
92378

1
92378

0
92378

{1, 2, 3, 4, 8, 9, 13, 14, 18, 19}

11 608.00 47349.76 0
75582

9
75582

0
75582

{6, 7, 10, 11, 12, 15, 16, 17}c

12 638.40 58882.56 4
50388

12
50388

0
50388

{4, 7, 9, 12, 14, 17, 18}c

13 604.80 61178.88 16
27132

48
27132

0
27132

{7, 9, 12, 14, 17, 18}c

14 562.40 63345.28 432
11628

288
11628

513
11628

{9, 13, 15, 18, 19}c

15 508.80 64788.48 912
3876

912
3876

912
3876

{15, 17, 18, 19}c

16 441.60 65003.52 57
969

57
969

57
969

{15, 18, 19}c

17 320 51200 171
171

171
171

171
171

any 17 columns

18 180 32400 19
19

19
19

19
19

any 18 columns
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Table 7: (M,S) Rankings versus others

GMA (trace(Cd), trace(C2
d)) (M,S) Df S2

f Ef G2 (B3, B4, B5)

5.1 (176, 3712) 2 2 1 1 1 (0.40, 0.20, 0.00)

5.2 (176, 3655.68) 1 1 1 1 2 (0.40, 0.20, 0.16)

5.3 (176, 4367.36) 4 4 3 1 3 (0.40, 0.52, 0.00)

5.4 (176, 4270.08) 3 3 3 8 4 (0.40, 0.52, 0.16)

5.5 (156.80, 3159.04) 6 6 5 1 5 (0.72, 0.20, 0.00)

5.6 (156.80, 3143.68) 5 5 5 7 6 (0.72, 0.20, 0.16)

5.7 (156.80, 3814.40) 7 7 7 5 7 (0.72, 0.52, 0.00)

5.8 (137.60, 2606.08) 8 8 8 5 8 (1.04, 0.20, 0.00)

5.9 (137.60, 3261.44) 10 10 9 9 9 (1.04, 0.52, 0.00)

5.10 (137.60, 3246.08) 9 9 9 10 10 (1.04, 0.52, 0.16)

5. Concluding Remarks

In this paper, the use of (M,S)-optimality in selecting and classifying regular designs

as well as nonregular designs is studied. Compared to the MA or GMA criterion, the

(M,S) criterion proposed is easier to compute and it is also independent of the choice of

orthonormal contrasts. Although main effects and 2fi’s are the focus in this paper, the

(M,S) criterion can easily be applied when higher-order interactions are also of interest.

For regular designs, the two components of the (M,S) criterion, i.e., trace(Cd) and

trace(C2
d), are derived as explicit functions of the numbers of three- and four-letter words.

Generally, (M,S)-optimal designs are not MA designs. All MA designs up to 64 runs are

(M,S)-optimal.

For nonregular designs, trace(Cd) and trace(C2
d) are written as functions of j3(s) and

j4(s). When applied to nonregular designs, the (M,S) criterion takes both the magnitude

and the frequencies of J-characteristics into consideration, while the GMA criterion uses

only ordinal information on the magnitude. The (M,S) criterion is different from the

minimum G2-aberration criterion. Minimum G2 projections of Hadamard matrices are not

necessarily (M,S)-optimal, and vice versa. Among projections from Hadamard matrices of

12, 16, and 20 runs, (M,S)-optimal projections are generally not MA, and MA projections

are not (M,S)-optimal.
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