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10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.
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FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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The AMS-02 experiment on ISS

fraction is steadily increasing from 10 to !250 GeV, but, from 20 to 250 GeV, the slope decreases by

an order of magnitude. The positron fraction spectrum shows no fine structure, and the positron to

electron ratio shows no observable anisotropy. Together, these features show the existence of new

physical phenomena.

DOI: 10.1103/PhysRevLett.110.141102 PACS numbers: 96.50.sb, 14.60.Cd, 95.35.+d, 95.55.Vj

The Alpha Magnetic Spectrometer (AMS-02) is a gen-
eral purpose high-energy particle physics detector. It was
installed on the International Space Station (ISS) on
19 May 2011 to conduct a unique long duration mission
(!20 years) of fundamental physics research in space. The
first AMS results reported in this Letter are based on the
data collected during the initial 18 months of operations on
the ISS, from 19 May 2011 to 10 December 2012. This
constitutes 8% of the expected AMS data sample. The
positron fraction, that is, the ratio of the positron flux to
the combined flux of positrons and electrons, is presented
in this Letter in the energy range from 0.5 to 350 GeV. Over
the past two decades, there has been strong interest in the
cosmic ray positron fraction in both particle physics and
astrophysics [1]. The purpose of this Letter is to present the
accurate determination of this fraction as a function of
energy and direction (anisotropy).

AMS detector.—The layout of the AMS-02 detector [2]
is shown in Fig. 1. It consists of nine planes of precision
silicon tracker, a transition radiation detector (TRD), four
planes of time of flight counters (TOF), a permanent
magnet, an array of anticoincidence counters (ACC), sur-
rounding the inner tracker, a ring imaging Čerenkov de-
tector (RICH), and an electromagnetic calorimeter
(ECAL). The figure also shows a high-energy electron of
1.03 TeV recorded by AMS.

The AMS coordinate system is concentric with the
center of the magnet. The x axis is parallel to the main
component of the magnetic field, and the z axis points
vertically. The (y-z) plane is the bending plane. AMS is
mounted on the ISS with a 12" roll to port to avoid the ISS
solar panels being in the detector field of view; terms such
as ‘‘above,’’ ‘‘below,’’ and ‘‘downward-going’’ refer to the
AMS coordinate system.

The tracker accurately determines the trajectory and
absolute charge (Z) of cosmic rays by multiple measure-
ments of the coordinates and energy loss. It is composed of
192 ladders, each containing double-sided silicon sensors,
readout electronics, and mechanical support [3,4]. Three
planes of aluminum honeycomb with carbon fiber skins are
equipped with ladders on both sides of the plane. These
double planes are numbered 3–8; see Fig. 1. Another three
planes are equipped with one layer of silicon ladders. As
indicated in Fig. 1, plane 1 is located on top of the TRD,
plane 2 is above the magnet, and plane 9 is between the
RICH and the ECAL. Plane 9 covers the ECAL accep-
tance. Planes 2–8 constitute the inner tracker. Coordinate
resolution of each plane is measured to be better than

10 !m in the bending direction, and the charge resolution
is !Z ’ 0:06 at Z ¼ 1. The total lever arm of the tracker
from plane 1 to plane 9 is 3.0 m. Positions of the planes of
the inner tracker are held stable by a special carbon fiber
structure [5]. It is monitored by using 20 IR laser beams
which penetrate through all planes of the inner tracker and
provide micron-level accuracy position measurements.
The positions of planes 1 and 9 are aligned by using cosmic
ray protons such that they are stable to 3 !m (see Fig. 2).
The TRD is designed to use transition radiation to dis-

tinguish between e$ and protons, and dE=dx to indepen-
dently identify nuclei [6]. It consists of 5248 proportional
tubes of 6 mm diameter with a maximum length of 2 m
arranged side by side in 16-tube modules. The 328 modules

TRD

Tracker 

ECAL 

RICH

FIG. 1 (color). A 1.03 TeV electron event as measured by the
AMS detector on the ISS in the bending (y-z) plane. Tracker
planes 1–9 measure the particle charge and momentum. The
TRD identifies the particle as an electron. The TOF measures
the charge and ensures that the particle is downward-going. The
RICH independently measures the charge and velocity. The
ECAL measures the 3D shower profile, independently identifies
the particle as an electron, and measures its energy. An electron
is identified by (i) an electron signal in the TRD, (ii) an electron
signal in the ECAL, and (iii) the matching of the ECAL shower
energy and the momentum measured with the tracker and
magnet.
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Lunched on May 2011, will collect data for 20 yrs.	

Will measure all CR nuclei species up to Ni. 
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Figure 1). The average time resolution of each counter has 
been measured to be 160 picoseconds, and the overall beta 
��	����� ������������� �������em has been measured to be 
��� ���� ���� �
�������� 
��������� ��� ��� ������
specifications. 

The Anti-Coincidence Counters (ACC) surround the 
AMS silicon tracker, just inside the inner cylinder of the 
vacuum case, to detect unwanted particles that enter or 
leave the tracker volume and induce signals close to the 
main particle track such that it could be incorrectly 
measured, for example confusing a nucleus trajectory with 
that of an anti-nucleus.  The ACC consists of sixteen 
curved scintillator panels of 1 m length, instrumented with 
wavelength shifting fibers to collect the light and guide it 
to a connector from where a clear fiber cable guides it to 
the photomultiplier sensors mounted on the conical flange 
of the vacuum case. 

2.3. Silicon Tracker and Permanent Magnet 

The tracker is composed of 192 ladders, the basic unit 
that contains the silicon sensors, readout electronics and 
mechanical support. Three planes of honeycomb with 
carbon fiber skin, equipped with silicon ladders on both 
sides, constitute the inner part of the silicon tracker. Other 
three planes equipped with only one layer of silicon 
ladders are located on top of TRD, on top of the 
Permanent Magnet and in between Ring Image Cherenkov 
detector and Electromagnetic Calorimeters as indicated in 
Figure 1. 

Each ladder has 100µm pitch silicon strips aligned with 
3µm accuracy that measure coordinates of charged 
particles two orthogonal projections. Accuracy of the 
measurement in the bending plane is 10µm. Overall there 
are close to 200000 readout channels. Signal amplitude 
provides a measurement of the particle charge independent 
of other sub-detectors as presented in Figure 2. 

 

 
Figure 2: Correlation between bending plane amplitudes 
(charge S) and non-bending plane amplitudes (charge K) 
as measured in the heavy ion beam of 158 GeV/n. 
 

 Permanent Magnet with the central field of 1.4kG 
provides a bending power sufficient to measure protons up 
to Maximal Detectable Rigidity of 2.14TV. For He nuclei 
the Maximal Detectable rigidity is 3.75TV 

2.4. Ring Imaging Cherenkov detector 

The Ring Imaging Cerenkov (RICH) detector is 
designed to separate charged isotopes in cosmic rays by 
measuring velocities of charged particles with a precision 
of one part in a thousand.  The detector consists of a dual 
dielectric radiator that induces the emission of a cone of 
light rays when traversed by charged particles with a 
velocity greater than that of the phase velocity of light in 
the material.  The emitted photons are detected by an array 
of photon sensors after an expansion distance of 45 cm  
The measurement of the opening angle of the cone of 
radiation provides a direct measurement of the velocity of 
the incoming charged particle (�=v/c).  By counting the 
number of emitted photons the charge (Z) of the particle 
can be determined (see Figure 3).  

The radiator material of the detector consists of 92 tiles 
of silica aerogel (refractive index n=1.05) of 2.5 cm 
thickness and 16 tiles of sodium fluoride (n=1.33) of 
0.5 cm thickness.  This allows detection of particles with 
velocities greater than 0.953c and 0.75c respectively.  The 
detection plane consists of 10,880 photon sensors with an 
effective spatial granularity of 8.5 x 8.5 mm2.  To reduce 
lateral losses the expansion volume is surrounded by a 
high reflectivity reflector with the shape of a truncated 
cone. 

 
Figure 3: Shown on top are snapshots of the rings 
produced by the different nuclei as seen by RICH. Bottom 
figure is a spectrum of charges observed in 158 GeV/n 
heavy ion beam. 

2.5. Electromagnetic Calorimeter 

The AMS-02 electromagnetic calorimeter (ECAL) 
consists of a lead scintillating fiber sandwich with an 
active area of 648x648 mm2 and a thickness of 166.5 mm.  
The calorimeter is composed of 9 superlayers, each 
18.5 mm thick and made of 11 grooved, 1 mm thick lead 
foils interleaved with 10 layers of 1 mm diameter 
scintillating fibers. In each superlayer, the fibers run in one 
direction only.  The 3-D imaging capability of the detector 
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With CR spectral measurements 
we can understand the properties 
of the ISM, and probe sources of 
high energy CRs. Antimatter CRs 
indirectly also probe Dark Matter 
(DM). Combine with gamma-ray 
and radio observations.

Relevance of CR measurements



AMS-02 positron fraction results

• Decrease of positron fraction at low 
energies in agreement with earlier 
measurements and theoretical expectations 
(we expected that: standard secondary/
primary CRs)	


• Further confirmation of the rise of the 
positron fraction above 10 GeV (seen by 
HEAT/PAMELA) with great accuracy (good 
to know)

10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
correlation with the number of selected positrons.
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FIG. 5 (color). The positron fraction compared with the most
recent measurements from PAMELA [22] and Fermi-LAT [23].
The comparatively small error bars for AMS are the quadratic
sum of the statistical and systematic uncertainties (see Table I
and [13]), and the horizontal positions are the centers of
each bin.
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!

• Change in the “slope” of the positron fraction between 20 and 250 GeV 
(interesting for DM)	


• No obvious deviation from a smooth rise of the fraction above 10 GeV 
(interesting as well but needs further analysis; we will revisit that)	


• Upper limit on anisotropy of CR positron fraction. Only in very extreme 
scenarios did we expect to see an anisotropy(see discussion later)
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Positron Fraction:



Why the *Rise* of the positron fraction is interesting:
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evidence for CDM 

• galactic rotation curves	


• velocity dispersion of galaxies in clusters	


• CMB data and SN Ia data	


• distribution of galaxies	


• strong lensing measurements of background objects 
(usually galaxies) 	


• “collisions” of galaxy clusters (bullet cluster)	


• success of BBN (DM is non-baryonic)	


• growth of structure (cold DM)

Most of the universe is beyond the standard 
model

DM is 

collisionless, not 

part of the 

standard model



Evidence for dark matter...

NGC 2403 rotation curve and model

Scales of dark matter

• DM tested in wide variety of arenas

Scales of dark matter

• DM tested in wide variety of arenas

Scales of dark matter

• DM tested in wide variety of arenas

Most of the universe is beyond the standard 
model

DM is 
collisionless, not 
part of the 
standard model
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FIG. 1: The positron fraction as a function of energy for various dark matter masses, annihilation modes and diffusion
parameters, compared to the background from secondary production alone (bottom line). In each frame, the annihilation rate
was chosen to produce the best fit to the PAMELA data above 10 GeV. The required boost factor was calculated using our
default values for the annihilation cross section (σv = 3 × 10−26 cm3/s) and the local dark matter density (0.35 GeV/cm3).

nels [29].

In summary, the PAMELA excess of high energy
positrons, confirming earlier excesses from HEAT and
AMS-01, raises the exciting possibility that we are seeing
evidence of dark matter annihilations. In this letter, we
have considered a range of dark matter annihilation chan-
nels and masses and find many scenarios which provide a
good fit to the data. In particular, dark matter annihila-
tions to leptons (especially e+e− and µ+µ−) quite easily
fit the observed spectrum. Annihilations to heavy quarks

or gauge bosons, in contrast, provide a poorer fit to the
data. This can be improved if most of the annihilations
occur locally (such as is expected if the Solar System re-
sides near a large subhalo or if the Galactic Magnetic
Field confines charged particles only to a region within
1-2 kpc of the Galactic Plane). In almost every case
we have considered, very large annihilation rates are re-
quired to produce the observed signal. In particular, 100
GeV (1 TeV) dark matter particles require annihilation
rates boosted by a factor of approximately ∼2.5 to 100

Implications of the positron fraction for Dark 
Matter annihilation models

Clear preference for leptophilic DM to account for the rise of the positron fraction 
spectrum  
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FIG. 4: The cosmic ray signals of dark matter annihilations as in Figure 3, but with χχ → µ+µ−.

constraints these prompt photons place on DM annihilation, using both galactic center and

diffuse extra-galactic limits.

We show in Figure 10 the limits on boost factors (BF) for different γ-ray production

modes, both for NFW and Einasto profiles. To generate these plots, we calculate the total

flux of prompt photons, either from FSR or π0 decays, from the different sky regions as

defined in [25]. We consider annihilations to τ+τ−, π0π0, and e+e−, as well as the mediator

decay modes χχ → φφ, with φ → τ+τ−, φ → π0π0 and φ → e+e−. To generate these

limits, we use the EGRET bounds from [45], and take the 2-sigma upper bounds to be con-

servative (no background subtraction is included). We show limits for both NFW (dashed)

and Einasto (solid) profiles. Note that the inclusion of backgrounds can make these limits

significantly stronger - we present them in this form to be clear what an incontestable upper
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FIG. 1: The 2� contours in the enhancement factor - mass plane for a) annihilation to µ+µ�, b) the Nomura-Thaler model N3
and c) the Arkani-Hamed et al. model AH4. The contours are shown for PAMELA and Fermi, whereas the HESS data is only
used as an upper limit. The black dot is the example model shown in Fig.2.
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FIG. 2: Spectra for examples of good fit models in 1. The signal and background are shown for electrons (e+ + e�) together
with Fermi [9] and HESS data [11, 27]. The HESS data and the background model has been rescaled with a factor 0.85. In
the inset, the positron fraction as measured with PAMELA is shown together with the predicted signal for the same model.

towards the galactic centre and dwarf spheroidals were
investigated. For Einasto or NFW profiles, the best fit
models are excluded due to gamma rays from the galactic
centre. However, for less steep profiles, like an isothermal
sphere, our best fit models are not excluded by these
data.

For the N and AH models, constraints from gamma
rays and radio (including final state radiation photons)
were investigated in [18]. The same conclusion holds for
these models, if the halo profile is an Einasto or NFW
profile (or steeper), the models are already excluded.
However, for shallower halo profiles, like an isothermal
sphere, the models are still viable. One should note that
the electron and positron fluxes discussed in this paper
are not very dependent on the choice of halo profile, so
the best-fit models derived here, would be more or less
the same for an NFW profile instead of the isothermal
profile we used in our analysis.

Given the large amounts of high-energy electrons and
positrons injected into the galaxy with these models, it
is also fair to wonder about secondary radiation from
inverse Compton scattering on the interstellar radiation
field [14, 15, 17, 28]. In [14] it is concluded that models
annihilating to µ+µ� are at tension with EGRET data

and that Fermi will be able to probe these models. Given
the new Fermi data, lower boost factors are needed than
those assumed in [14], so the tension with EGRET data is
less severe. However, Fermi should still be able to probe
these models. For the N3 and AH4 model, we get very
similar constraints [17] and these are also viable with a
shallow halo profile.

One should also note that we have chosen to work
with a rather standard halo and di�usion model, but it is
rather straightforward to rescale our results via the en-
hancement factor introduced in Eq. (1). Note that the
dependence on ⇥0 and ⇤0 in Eq. (1) is a very good ap-
proximation for high energies. For lower energies (i.e. the
PAMELA range), it is more involved as the positrons at
these energies have propagated rather far. Keeping the
signal fixed at higher energies, it is possible to move the
signal from dark matter up at lower energies by having
a larger significant di�usion region (by having a larger
di�usion zone half height and a larger di�usion coe⌅-
cient). Increasing ⇤0 will also increase the fluxes at low
energies slightly more than the linear relation in Eq. (1)
as positrons then sample a larger (and partly denser) re-
gion in the galaxy. These e�ects are more pronounced
for steeper halo profiles, like a Navarro-Frenk-White [29]

Bergstrom, Edsjo, Zaharijas, PRL 103, 2009

Cholis, Goodenough, Hooper, Simet, Weiner PRD, 2009

Cholis, Dobler, Finkbeiner,	

Goodenough,Weiner PRD, 2009
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FIG. 2: Scan over mSUGRA (left) and MSSM-9 (right) models that shows the enhancement in the positron flux (at Ee+ =
0.9 mχ) due to radiative corrections vs. the mass splitting between the lightest selectron and the neutralino, δ ≡ (mẽ − mχ) /mχ.
Also indicated in this figure are the benchmark model BM3 from [21] and a further benchmark model BM5’ as introduced in
the text.

free parameters as compared to mSUGRA is mainly that
the total annihilation cross section is not anymore closely
linked to the mẽ-mχ mass splitting by the relic density
requirement. As a result, the enhancements in the total
positron flux can be both considerably larger and smaller
than in the mSUGRA case, depending on the total an-
nihilation rate to lowest order; the main contribution to
the flux enhancement, however, is in any case found from
the e+e−γ channel.

In Fig. 3, we plot the resulting flux ratio e+/(e+ + e−)
from neutralino annihilations for both BM3 and a point
BM5’ in the MSSM-9 parameter space (with mχ =
132 GeV, mẽ = 157 GeV; both models are marked in
Fig. 2) and compare it to the PAMELA data. For com-
parison, we also show the expected background flux [29].
Propagation effects thus considerably smear the spec-
trum shown in Fig. 1, but the clearly pronounced cutoff
at Ee+ = mχ still remains as a prominent feature. It is
interesting to note that this type of pronounced spectral
signature so far has only been associated to Kaluza-Klein
dark matter [30]. Even though the cutoff in this latter
case appears, due to the large branching ratio into e+e−,
to be even more pronounced, it would be observationally
very challenging to see this difference with an energy res-
olution of the about 5% expected for PAMELA. The ap-
parent discrepancy between the background expectation
and the new data at small energies is most likely due to
a change in the solar potential which has not been taken
into account so far [5]; this effect, however, is expected to
be negligible at positron energies above around 10 GeV
and we will therefore not discuss it further here.

HEAT

PAMELA

Ee+ [GeV]

e+
/(

e+
+

e−
)

Bergström, Bringmann & Edsjö (2008)

background

BM3 (mχ=233 GeV)

BM5’ (mχ=132 GeV)

5 10 20 50 100 200
0.01

0.02

0.05

0.1

0.2

.

FIG. 3: The solid line is the expected flux ratio e+/(e+ + e−)
as calculated following [29]. The data points are the combined
HEAT [31] and PAMELA data [5]. Furthermore, the expected
flux ratio for our benchmark models is shown without (dot-
ted lines) and after taking into account radiative corrections
(dashed lines). See text for further details.

Unfortunately, the need for large boost factors is
generic for all models that show a high positron yield en-
hancement in the way reported here (in Fig. 3, we used

PAMELA 08

All leptons
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Figure 2: Annihilating DM: current constraints. Left Panel: current constraints from the
antiproton measurements by Pamela, for di�erent annihilation channels. The areas above the curves
are excluded. The dashed lines reproduce the �-ray constraints from [30], for the same channels. The
symbols individuates the parameters used for the analyses in Sec. 3.2.2 while the horizontal band signals
the thermal relic cross section. Right Panel: illustration of the impact of astrophysical uncertainties:
the constraint for the bb̄ channel spans the shaded band when varying the propagation parameters
(dashed lines) or the halo profiles (solid lines).

a positive detection of a deviation, it will be crucial to keep in mind these possibilities when
working on its interpretation.

3 Results and discussion

3.1 Current antiproton constraints from Pamela

The currently most precise measurement of the CR antiproton flux is provided by the Pamela
satellite [29], as anticipated in the Introduction. The data, reproduced in fig. 1, extend from
kinetic energies of less than 1 GeV to about 180 GeV (although we use only the portion above
10 GeV to avoid the e⇥ects of solar modulation).

The total antiproton flux is given by the sum of the DM and the astrophysical contributions,

⇥tot(mDM, ⇤�v⌅;A, p) = ⇥DM(mDM, ⇤�v⌅) + ⇥bkg(A, p). (3)

For fixed values of the DM particle mass mDM and the thermally averaged annihilation cross-
section ⇤�v⌅, the astrophysical background is optimized within the uncertainty bandwidth in
order to minimize the ⇤2 of the total flux with respect to the data. During this procedure,
the optimal values of the amplitude Aopt ⇥ [0.9, 1.1] and the slope popt ⇥ [�0.05, 0.05] are
determined. Then, to find the 2� exclusion contour in the (mDM, ⇤�v⌅)-plane, the required
condition is

�⇤2(mDM, ⇤�v⌅) = ⇤2(mDM, ⇤�v⌅;Aopt, popt)� ⇤2
0(A0, p0) < 4. (4)

6

Cirelli, Giesen, JCAP 1304 (2013) 015
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FIG. 8: Constraints for the Wino model as function of the particle mass. The black line corresponds to the cross-section given
in Eq. 1. Colors are as in Fig. 2 (solid: Einasto profile, dotted: NFW, dashed: Burkert).

V. LIMITS ON DM MODELS FROM ANTIPROTON DATA

Since the p̄ produced in pp and pHe collisions in the ISM contribute significantly to the local p̄ flux in the observed
energy range, providing a very good fit of currently available data, and WIMP annihilations can be in principle
a copious source of p̄, antiprotons are a powerful channel to set limits on WIMP DM models. Still, as we just
discussed, the prediction for the WIMP signal is severely a�ected by uncertainties in the propagation model and the
DM distribution in the Galaxy. In the following, taking the conventional astrophysical contribution (background)
as obtained in the five propagation models listed in Table II (see also Fig. 2-7), we consider the three DM WIMP
scenarios introduced in Section II and derive constraints on the DM annihilation cross-section, for a specific DM mass
and our three reference spherical dark matter profile, by requiring that the total antiproton flux is within 3⇥ to the
combination of all the p̄ flux data points.

We clarify that those constraints are not the most conservative constraints. In fact they are the strongest constraints
we could get, by having propagation models that fit already the B/C flux ratio, the p and He fluxes and also give
good fit to the p̄ flux. Significantly weaker constraints on DM have been drown by allowing for greater uncertainties
in p̄ background flux [22, 36, 37]. The most conservative upper limits on DM models come from being completely
agnostic about p̄ background fluxes, setting limits by demanding that the DM p̄ flux does not exceed the measured p̄
flux at any energy by more than 3⇥ [37]. Such a method provides more robust constraints. On the other hand the
advantage of our method is that it provides more realistic constraints.

In Fig. 8 we present our 3⇥ limits with three di�erent spherical halo profiles (Einasto, NFW, Burkert), for the
non-thermal Wino DM models up to 500GeV. The most tight constraints come from the thick (THK) propagation
model, which probes a larger part of the dark halo, while the thin halo, for the opposite reason gives the weakest
constraints similarly to the work by [102]. Yet even the thin di�usion model excludes a Wino DM lighter than 300
(200) GeV at 3⇥ level for a Burkert (NFW) profile. Thus models such as [25, 26], that have been suggested by [35]
to explain the rise of the positron fraction measured by PAMELA [2] are excluded. Note that the more conventional
di�usion zone KRA and KOL models exclude Wino DM up to 500 GeV.

In Fig. 9, we give the equivalent constraints for heavy WIMPs that annihilate into µ+µ� with the high energy
muons that are produced emitting EW gauge bosons which are responsible for the antiproton yield [43]. While being
an important source, the emission of the gauge bosons is not strong enough though, to exclude in most cases the
regions of parameter space compatible at 3⇥ with the fit of the PAMELA positron fraction and Fermi all-electron
measurement [103]. An interesting exception is the model with high convection, which excludes to 3⇥ most part of the
PAMELA 3⇥ fit region above M = 1 TeV. Since the presence of convection, hardens the p̄ fluxes, higher convection
models can draw tighter constraints on the heavier DM models than low (or no) convection models do. This can
clearly be seen by comparing the 3⇥ limits from the convection model between Fig. 8, 9 and 10. Thus to constrain

3

briefly introduce the CR propagation models and the tools we use to solve numerically the CR propagation equation,
namely the DRAGON code [23]. We then define a range of propagation frameworks and their impact on the antiproton
flux. In Section IV we discuss in detail the issue of locality in the secondary and DM-induced source functions with
respect to the locally measured antiproton flux; This gives a guideline for more exotic propagation model one could
consider to maximize the impact on the DM component, as discussed in Section VI. In Section V we discuss constraints
on our selected models within the CR propagation models introduced, while in Section VII we compare with previous
results and discuss future perspectives. Section VIII is devoted to our final comments and conclusions.

II. DARK MATTER MODELS

There are numerous beyond SM scenarios embedding a WIMP DM candidate. Rather than studying general
classes of models over exceedingly large parameter spaces, we chose here to focus on three sample cases which have
been recently investigated in connection to hints of DM signals in other detection channels, but potentially giving
a sizable antiproton flux as well. These sample cases are also representative of three di�erent WIMP mass regimes,
ranging from fairly light models to multi-TeV DM, and are thus sensitive to di�erent parts of the measured antiproton
spectrum. Since the di�erent assumptions on the galactic CR propagation model influence di�erently low- or high-
energy antiprotons, these three mass ranges are useful to illustrate the dependence of the DM signal on propagation.

A. Non-thermal Wino dark matter

As a first test case, we consider a pure Wino within the Minimal Supersymmetric extension to the Standard Model
(MSSM). The Wino is a spin 1/2 Majorana fermion, superpartner of the neutral SU(2)L gauge boson and one of the
four interaction eigenstates whose superposition give rise to the four neutralino mass eigenstates in the MSSM; we will
consider it in the limit when the Wino mass parameter, usually indicated as M2, is much lighter than the other SUSY
mass parameters, so that interaction and mass eigenstates coincide and the Wino is the lightest SUSY particle (LSP)
and, in a R-parity conserving SUSY model, stable. Examples of theories which predict or can embed a low-energy
spectrum with a Wino LSP are, e.g., the anomaly mediated SUSY breaking scenario [24] and the G2-MSSM [25]. If
kinematically allowed, the Wino pair annihilation is dominated by the W boson final state, driven by the exchange in
the t- and u-channel of a Wino-like chargino which, in the pure Wino limit, has also a mass equal to M2, up to a very
small mass splitting induced by radiative corrections. Neglecting this small correction, the tree-level cross section for
W̃ 0W̃ 0 ⇤ W+W� in the non-relativistic limit is given by (see, e.g., [26]):

(⇥v)v⇥0 =
g42
2�

1

m2
�

(1�m2
W /m2

�)
3/2

(2�m2
W /m2

�)
2
, (1)

where m� = M2 is the Wino mass, mW the mass of the W boson and g2 the gauge coupling constant of SU(2)L. We
will focus on cases with m� in the few hundred GeV range; for such masses, (⇥v) is much larger than the nominal
value of about 3 · 10�26 cm3 s�1 for thermal relic WIMPs (actually, in this example, this simplified estimate does not
hold since chargino coannihilation e�ects are important, see, e.g., [27]; Sommerfeld enhancements, namely long-range
e�ects mediated by SU(2)L bosons, are instead relevant only for much heavier Winos, see, e.g., [28, 29]). Although
the thermal relic component is small, this could still be a viable DM model if Winos are generated non-thermally in
the out-of-equilibrium decay of heavy fields, like gravitinos or weakly coupled moduli, see, e.g., [26, 30–33]. In this
case the relic density depends on the induced reheating temperature and, possibly, on the branching ratio of the decay
into Winos, two quantities that are turn defined by sectors of the theory we did not specify. We will simply assume
that they can be adjusted in such way that any Wino of given mass can be regarded as a good DM candidate. Results
will also be discussed in the more general scenario in which m� and (⇥v) are assumed as free parameters, but still
restricting to the case of W boson as dominant annihilation channel.

The recent interest in this model has been stimulated, besides its peculiar signatures at the LHC, by the claim [34, 35]
that a Wino with mass of about 200 GeV can explain the rise detected by PAMELA in the positron fraction [2]. This
interpretation is controversial since the positron excess that it can indeed induce comes together with a rather copious
antiproton yield. It has been shown that under “standard” assumptions for cosmic-ray propagation and for the dark
matter distribution in the Galaxy, the correlation between the leptonic and hadronic yield of this channel implies
that the interpretation of the PAMELA positron data in terms of WIMP annihilating into W+W� is excluded for
WIMP masses lighter than a few TeV by the non-observation of an antiproton excess by PAMELA and in previous
antiproton measurements, see, e.g., [22, 36, 37]. In [35] three main arguments are given to disregard the antiproton
bound: i) Since the positrons from Wino annihilation have, on average, higher energies compared to antiprotons,
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considered in our analysis becomes

L(D|pW,{p}i) =
�

i

LLAT
i (D|pW,pi)

⇥ 1

ln(10) Ji
�
2�⇥i

e�[log10(Ji)�log10(Ji)]
2
/2�2

i ,

(1)

where LLAT
i denotes the binned Poisson likelihood that is

commonly used in a standard single ROI analysis of the
LAT data and takes full account of the point-spread func-
tion, including its energy dependence; i indexes the ROIs;
D represents the binned gamma-ray data; pW represents
the set of ROI-independent DM parameters (⇧⇥annv⌃ and
mW ); and {p}i are the ROI-dependent model parame-
ters. In this analysis, {p}i includes the normalizations
of the nearby point and di⇥use sources and the J factor,
Ji. log10(Ji) and ⇥i are the mean and standard devia-
tions of the distribution of log10 (Ji), approximated to be
Gaussian, and their values are given in Columns 5 and
6, respectively, of Table I.

The fit proceeds as follows. For given fixed values of
mW and bf , we optimize � lnL, with L given in Eq. 1.
Confidence intervals or upper limits, taking into account
uncertainties in the nuisance parameters, are then com-
puted using the “profile likelihood”technique, which is
a standard method for treating nuisance parameters in
likelihood analyses (see, e.g., [32]), and consists of calcu-
lating the profile likelihood � lnLp(⇧⇥annv⌃) for several
fixed masses mW , where, for each ⇧⇥annv⌃, � lnL is min-
imized with respect to all other parameters. The inter-
vals are then obtained by requiring 2� ln(Lp) = 2.71 for
a one-sided 95% confidence level. The MINUIT subrou-
tine MINOS [33] is used as the implementation of this
technique. Note that uncertainties in the background fit
(di⇥use and nearby sources) are also treated in this way.
To summarize, the free parameters of the fit are ⇧⇥annv⌃,
the J factors, and the Galactic di⇥use and isotropic back-
ground normalizations as well as the normalizations of
near-by point sources. The coverage of this profile joint
likelihood method for calculating confidence intervals has
been verified using toy Monte Carlo calculations for a
Poisson process with known background and Fermi-LAT
simulations of Galactic and isotropic di⇥use gamma-ray
emission. The parameter range for ⇧⇥annv⌃ is restricted
to have a lower bound of zero, to facilitate convergence of
the MINOS fit, resulting in slight overcoverage for small
signals, i.e., conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-
its. Individual and combined upper limits on the anni-
hilation cross section for the bb̄ final state are shown in
Fig. 1; see also [34]. Including the J-factor uncertainties

FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (⇥ 3 · 10�26 cm3s�1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the ⇥+⇥� channel, the
µ+µ� channel, and the W+W� channel. The most generic
cross section (⇥ 3 ·10�26 cm3s�1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to
using the nominal J factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper
limit compared to using nominal J factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-
lites with small kinematic data sets and relatively large

dwarf Spheroidal gal.	
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Figure 2: The regions on the parameter space m�–⇤�v⌅ that are excluded by the di�use galactic
gamma ray measurements by the Fermi satellite. The first column of panels refers to DM annihila-
tions into e+e�, the second into µ+µ� and the third into ⇥+⇥�; the three rows assume respectively
an NFW, an Einasto and a cored Isothermal profile. Each panel shows the exclusion contour due
to Fermi observations of the ‘3⇥ ⇥ 3⇥’ region (blue short dashed line), ‘5⇥ ⇥ 30⇥’ region (orange
dashed line), the ‘10⇥ � 20⇥ strip’ (red long dashed line) and the ‘Galactic Poles’ |b| > 60⇥ region
(black long dashed line). We also report the regions that allow to fit the PAMELA positron data
(green and yellow bands, 95 % and 99.999 % C.L. regions) and the PAMELA positron + Fermi and
HESS data (red and orange blobs, 95% and 99.999% C.L. regions).
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Figure 3: Like figure 2, but for DM annihilations into bb̄, W+W�, and tt̄.

� For NFW or Einasto profiles, a significant contribution to the positron fraction appears
strongly excluded by gamma-rays. Note that for cored-profiles, the inner-galaxy data are
relaxed, but the higher latitude ones are not and those are su�cient to suggest an (at most)
subleading contribution of DM to the positron flux.

� For NFW or Einasto profiles, already this extremely conservative analysis gives constraints
on ⇤�v⌅ which, for typical masses m� ⇥ 100GeV, are within one order of magnitude of the
value expected for a S-wave annihilating thermal relic.
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Ruled out by WMAP5
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 1 XDM µ+µ- 2500 GeV, BF = 2300
 2 µ+µ- 1500 GeV, BF = 1100
 3 XDM µ+µ- 2500 GeV, BF = 1000
 4 XDM e+e- 1000 GeV, BF = 300
 5 XDM 4:4:1 1000 GeV, BF = 420
 6 e+e- 700 GeV, BF = 220
 7 µ+µ- 1500 GeV, BF = 560
 8 XDM 1:1:2 1500 GeV, BF = 400
 9 XDM µ+µ- 400 GeV, BF = 110
10 µ+µ- 250 GeV, BF = 81
11 W+W- 200 GeV, BF = 66
12 XDM e+e- 150 GeV, BF = 16
13 e+e- 100 GeV, BF = 10

FIG. 6: Constraints on the annihilation cross-section ⟨σAv⟩
the efficiency factor f . The dark blue area is excluded by
WMAP5 data at 95% confidence, whereas the lighter blue
area shows the region of parameter space that will be probed
by Planck. The cyan area is the zone that can ultimately be
explored by a cosmic variance limited experiment with angu-
lar resolution comparable to Planck. Constraints are taken
from [42] (Fig. 4). The data points indicate the positions of
models which fit the observed cosmic-ray excesses, as fitted in
[20, 55]. Squares: PAMELA only. Diamonds: PAMELA and
Fermi. Crosses: PAMELA and ATIC. Error bars indicate the
factor-of-4 uncertainty in the required boost factor due to un-
certainties in the local dark matter density (any substructure
contributions are not taken into account). For models labeled
by “XDM” followed by a ratio, the annihilation is through an
XDM intermediate light state to electrons, muons and pions
in the given ratio (e.g. “XDM 4:4:1” corresponds to 4:4:1
annihilation to e+e−, µ+µ− and π+π−).

by WMAP5 constraints, either the enhancement must
be saturated over the redshift range in question (z ∼
100 − 4000), or α or f(z) must be extremely small – in
which case the model could not explain the cosmic-ray
anomalies described in the Introduction. For the models
of greatest interest, the enhancement S thus provides a
constant boost factor to the annihilation cross section at
z ∼ 1000, and our constraints apply directly.

At redshift z, the CMB temperature is ∼ 2.35 ×
10−4(1 + z) eV. This places an upper bound on the tem-
perature of the DM: however, after kinetic decoupling
the DM temperature evolves adiabatically as T ∝ z2,
and thus the WIMPs can be much colder than the pho-
ton temperature. [42] suggests v/c ∼ 10−8 at z ∼ 1000
for a 100 GeV WIMP.

If the enhancement is still unsaturated at such low ve-
locities, then the force carrier must be extremely light
compared to the WIMP mass. For the models recently
proposed in the literature [21, 23, 25, 57], the enhance-
ment has always saturated by this point as the force carri-
ers are much heavier than 10−8MDM. Other constraints
on models with very low-mass mediators also exist: as

one example, a 1/v enhancement which saturates at too
low a velocity can also cause runaway annihilations in
the first DM halos at the onset of structure formation
[58]. Furthermore, as shown in Fig. 6, models which fit
the recently observed cosmic-ray anomalies are already
close to being ruled out by WMAP5. If the Sommer-
feld enhancement in such models has not saturated by
(v/c) ∼ 10−8, this implies an effective cross section at re-
combination ∼ 4 − 5 orders of magnitude higher than in
the present-day Galactic halo. Such models are therefore
strongly excluded by WMAP5. Similarly, if the WIMP
annihilates to the same particle which mediates the Som-
merfeld enhancement, then in order for the enhancement
to evade the constraints in Fig. 6, the coupling α between
the WIMP and the force carrier must be extremely small
– reducing the annihilation cross section at freeze-out to
unacceptable levels for a thermal relic. Thus for a broad
range of well motivated models, it is self-consistent to as-
sume that the Sommerfeld enhancement is saturated for
the redshift range of interest (z ∼ 100 − 4000).

We can write the 95 % confidence limits from WMAP5
in terms of constraints on the total cross section,

⟨σAv⟩saturated <
3.6 × 10−24cm3/s

f

(

MDMc2

1TeV

)

, (6)

or as constraints on the maximum saturated enhance-
ment, relative to the thermal relic cross section ⟨σAv⟩ =
3 × 10−26 cm3/s,

Smax <
120

f

(

MDMc2

1TeV

)

. (7)

In both cases values of f for the different channels are
given in Table I.

These results directly limit the maximum boost fac-
tor possible from substructure, in Sommerfeld-enhanced
models. There has recently been considerable interest
in possible annihilation signals from dark matter sub-
halos, where the DM velocity dispersion is reduced and
the Sommerfeld-enhanced cross section is boosted (e.g.
[59, 60, 61, 62]). However, the saturated cross section
cannot be much larger than that required to fit the cos-
mic ray anomalies, so for models which fit the cosmic ray
anomalies, the lower velocity dispersion in subhalos will
not result in a higher annihilation cross section.

2. Sommerfeld-enhanced models fitting cosmic ray excesses

In Sommerfeld-enhanced models which produce the ob-
served excesses in e+e− cosmic rays, the saturation of
the enhancement is even more constrained than in the
general case. Since the cross sections required to fit
the cosmic ray anomalies are already nearly excluded by
WMAP5, as shown in Fig. 6, the enhancement must al-
ready be close to saturation at v ∼ 150 km/s (5×10−4c),
the estimated local WIMP velocity dispersion. Astro-
physical uncertainties – in the propagation of cosmic rays,

Slatyer, Padmanabhan, Finkbeiner PRD 2009
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FIG. 3: The annihilation diagrams χχ → φφ both with (a) and without (b) the Sommerfeld enhancements.

for ordinary WIMP annihilations, mediated by W/Z/γ exchange).

Because of the presence of a new light state, the annihilation χχ → φφ can, and naturally will, be significant. In

order not to spoil the success of nucleosynthesis, we cannot have very light new states in this sector, with a mass <∼ 10

MeV, in thermal equilibrium with the standard model; the simplest picture is therefore that all the light states in the

dark sector have a mass ∼ GeV. Without any special symmetries, there is no reason for any of these particles to be

exactly stable, and the lightest ones can therefore only decay back to standard model states, indeed many SM states

are also likely kinematically inaccessible, thus favoring ones that produce high energy positrons and electrons. This

mechanism was first utilized in [19] to generate a large positron signal with smaller π0 and p̄ signals. Consequently, an

important question is the tendency of φ to decay to leptons. This is a simple matter of how φ couples to the standard

model. (A more detailed discussion of this can be found in [30].)

A scalar φ can couple with a dilaton-like coupling φFµνFµν , which will produce photons and hadrons (via gluons).

Such a possibility will generally fail to produce a hard e+e− spectrum. A more promising approach would be to mix

φ with the standard model Higgs with a term κφ2h†h. Should φ acquire a vev ⟨φ⟩ ∼ mφ, then we yield a small mixing

with the standard model Higgs, and the φ will decay into the heaviest fermion pair available. For mφ
<∼ 200 MeV

it will decay directly to e+e−, while for 200 MeV<∼ mφ
<∼ 250 MeV, φ will decay dominantly to muons. Above that

hadronic states appear, and pion modes will dominate. Both e+e− and µ+µ− give good fits to the PAMELA data,

while e+e− gives a better fit to PAMELA+ATIC.

A pseudoscalar, while not yielding a Sommerfeld enhancement, could naturally be present in this new sector. Such

a particle would typically couple to the heaviest particle available, or through the axion analog of the dilaton coupling

above. Consequently, the decays of a pseudoscalar would be similar to those of the scalar.

A vector boson will naturally mix with electromagnetism via the operator F ′
µνFµν . This possibility was considered

some time ago in [40]. Such an operator will cause a vector φµ to couple directly to charge. Thus, for mφ
<∼ 2mµ it

will decay to e+e−, while for 2mµ
<∼ mφ

<∼ 2mπ it will decay equally to e+e− and µ+µ−. Above 2mπ, it will decay

40% e+e−, 40%µ+µ− and 20%π+π−. At these masses, no direct decays into π0’s will occur because they are neutral

and the hadrons are the appropriate degrees of freedom. At higher masses, where quarks and QCD are the appropriate

degrees of freedom, the φ will decay to quarks, producing a wider range of hadronic states, including π0’s, and, at

suitably high masses mφ
>∼ 2 GeV, antiprotons as well [66]. In addition to XDM [18], some other important examples

of theories under which dark matter interacts with new forces include WIMPless models [41], mirror dark matter [42]

and secluded dark matter [43].

Note that, while these interactions between the sectors can be small, they are all large enough to keep the dark

and standard model sectors in thermal equilibrium down to temperatures far beneath the dark matter mass, and (as

mentioned in the previous section), we can naturally get the correct thermal relic abundance with a weak-scale dark

matter mass and perturbative annihilation cross sections. Kinetic equilibrium in these models is naturally maintained

down to the temperature TCMB ∼ mφ [44].
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determines the length scale the potential is varying over relative to the wavelength; so long as it is small, the WKB

approximation is good, and we have a waveform growing as k−1/2
eff ei

R

x dx′keff(x
′). Note that for 1 ≪ x ≪ 1/ϵφ, the

WKB approximation is manifestly good. Let us now take the arbitrarily low velocity limit, where ϵv → 0. Then in

the neighborhood of x ∼ 1/ϵφ we have k2
eff ∼ ϵφe−ϵφx, and
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2
ϵφx ∼

ϵφ
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so the WKB approximation breaks down when keff ∼ ϵφ, where the WKB amplitude is ∼ ϵ−1/2
φ . The potential then

varies more sharply than the wavelength, and we have a reflection/transmission problem, with an O(1) fraction of the

amplitude escaping to infinity. The enhancement is then

S ∼
1

ϵφ
∼

αM

mφ
(A41)

We did this analysis for ϵv → 0, but clearly it will hold for larger ϵv, till ϵv ∼ ϵφ, at which point it matches smoothly

to the 1
ϵv

enhancement we get for the Coulomb problem. The crossover with ϵv ∼ ϵφ is equivalent to Mv ∼ mφ, when

the deBroglie wavelength of the particle is comparable to the range of the interaction. This is intuitive–as the particle

velocity drops and the deBroglie wavelength becomes larger than the range of the attractive force, the enhancement

saturates. Of course if ϵφ is close to the values that make the Yukawa potential have zero-energy bound states, then

the enhancement is much larger; we can get an additional enhancement ∼ ϵφ/ϵ2v up to the point where it gets cut off

by finite width effects.

In this simple theory it is of course also straightforward to solve for the Sommerfeld enhancement numerically. We

show the enhancement as a function of ϵφ and ϵv in Figs. 6 and 7.
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upper left triangle is the resonance region.

4. Two-particle annihilation

Let us finally consider our real case of interest, involving two-particle annihilation. To keep things simple, let us

imagine that the two particles are not identical, for instance they could be Majorana fermions with opposite spins; we
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We simplify the analysis by working with the natural dimensionless variables, with the unit of length normalized

to the Bohr radius, i.e. we take

r = α−1M−1x (A20)

Then the Schrödinger equation becomes

− χ′′ −
1

x
χ = ϵ2χ (A21)

where we have defined the parameter

ϵv ≡
v

α
(A22)

Of course we can solve this exactly in terms of hypergeometric functions to find the result obtained by Sommerfeld

Sk =

∣

∣

∣

∣

π
ϵv

1 − e−
π
ϵv

∣

∣

∣

∣

(A23)

Note that as ϵv → ∞, Sk → 1 as expected; there is no enhancement at large velocity. For the attractive Yukawa at

small velocities we have the enhancement

Sk →
πα

v
(A24)

while for the repulsive case, there is instead the expected exponential suppression from the need to tunnel through

the Coulomb barrier

Sk ∼ e−
π|α|

v (A25)

To get some simple insight into what is going on, let us re-derive these results approximately. For x much smaller

than 1/ϵ2v, we can ignore the kinetic term. In the WKB approximation, the waves are of the form x1/4ei
√

x, so the

amplitudes grow like x1/4. In order to match to a unit norm wave near x ∼ 1/ϵ2v, we have to scale the wavefunction

at small x by a factor ∼ ϵ1/2
v , so that near the origin

χ ∼ xϵ1/2
v ∼ αMrϵ1/2

v (A26)

from which we can read off the derivative at the origin dχ
dr (0) = ϵ1/2

v αM , and with k = Mv we can determine

Sk ∼ |
ϵ1/2
v αM

Mv
|2 =

α

v
(A27)

which is correct parametrically. We can also arrive at this result from the second form for Sk. The computation is

even more direct here. We have waveforms growing as x1/4 towards x ∼ 1
ϵ2v

. In the region near x ∼ 1/ϵv, we must

transition to a purely outgoing wave. This is a transmission/reflection problem, and ingoing and outgoing waves from

the left will have comparable amplitude. When we continue these back to the origin, we will then have an amplitude

reduced by a factor ∼ ϵ1/2
v . Then,

Sk ∼
(

1

ϵ1/2
v

)2

∼
α

v
(A28)

2. Attractive Well and Resonance Scattering

Let us do another example, where

V = −V0θ(L − r), V0 ≡
κ2

2M
(A29)
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FIG. 3: The annihilation diagrams χχ → φφ both with (a) and without (b) the Sommerfeld enhancements.

for ordinary WIMP annihilations, mediated by W/Z/γ exchange).

Because of the presence of a new light state, the annihilation χχ → φφ can, and naturally will, be significant. In

order not to spoil the success of nucleosynthesis, we cannot have very light new states in this sector, with a mass <∼ 10

MeV, in thermal equilibrium with the standard model; the simplest picture is therefore that all the light states in the

dark sector have a mass ∼ GeV. Without any special symmetries, there is no reason for any of these particles to be

exactly stable, and the lightest ones can therefore only decay back to standard model states, indeed many SM states

are also likely kinematically inaccessible, thus favoring ones that produce high energy positrons and electrons. This

mechanism was first utilized in [19] to generate a large positron signal with smaller π0 and p̄ signals. Consequently, an

important question is the tendency of φ to decay to leptons. This is a simple matter of how φ couples to the standard

model. (A more detailed discussion of this can be found in [30].)

A scalar φ can couple with a dilaton-like coupling φFµνFµν , which will produce photons and hadrons (via gluons).

Such a possibility will generally fail to produce a hard e+e− spectrum. A more promising approach would be to mix

φ with the standard model Higgs with a term κφ2h†h. Should φ acquire a vev ⟨φ⟩ ∼ mφ, then we yield a small mixing

with the standard model Higgs, and the φ will decay into the heaviest fermion pair available. For mφ
<∼ 200 MeV

it will decay directly to e+e−, while for 200 MeV<∼ mφ
<∼ 250 MeV, φ will decay dominantly to muons. Above that

hadronic states appear, and pion modes will dominate. Both e+e− and µ+µ− give good fits to the PAMELA data,

while e+e− gives a better fit to PAMELA+ATIC.

A pseudoscalar, while not yielding a Sommerfeld enhancement, could naturally be present in this new sector. Such

a particle would typically couple to the heaviest particle available, or through the axion analog of the dilaton coupling

above. Consequently, the decays of a pseudoscalar would be similar to those of the scalar.

A vector boson will naturally mix with electromagnetism via the operator F ′
µνFµν . This possibility was considered

some time ago in [40]. Such an operator will cause a vector φµ to couple directly to charge. Thus, for mφ
<∼ 2mµ it

will decay to e+e−, while for 2mµ
<∼ mφ

<∼ 2mπ it will decay equally to e+e− and µ+µ−. Above 2mπ, it will decay

40% e+e−, 40%µ+µ− and 20%π+π−. At these masses, no direct decays into π0’s will occur because they are neutral

and the hadrons are the appropriate degrees of freedom. At higher masses, where quarks and QCD are the appropriate

degrees of freedom, the φ will decay to quarks, producing a wider range of hadronic states, including π0’s, and, at

suitably high masses mφ
>∼ 2 GeV, antiprotons as well [66]. In addition to XDM [18], some other important examples

of theories under which dark matter interacts with new forces include WIMPless models [41], mirror dark matter [42]

and secluded dark matter [43].

Note that, while these interactions between the sectors can be small, they are all large enough to keep the dark

and standard model sectors in thermal equilibrium down to temperatures far beneath the dark matter mass, and (as

mentioned in the previous section), we can naturally get the correct thermal relic abundance with a weak-scale dark

matter mass and perturbative annihilation cross sections. Kinetic equilibrium in these models is naturally maintained

down to the temperature TCMB ∼ mφ [44].
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for ordinary WIMP annihilations, mediated by W/Z/γ exchange).

Because of the presence of a new light state, the annihilation χχ → φφ can, and naturally will, be significant. In

order not to spoil the success of nucleosynthesis, we cannot have very light new states in this sector, with a mass <∼ 10

MeV, in thermal equilibrium with the standard model; the simplest picture is therefore that all the light states in the

dark sector have a mass ∼ GeV. Without any special symmetries, there is no reason for any of these particles to be

exactly stable, and the lightest ones can therefore only decay back to standard model states, indeed many SM states

are also likely kinematically inaccessible, thus favoring ones that produce high energy positrons and electrons. This

mechanism was first utilized in [19] to generate a large positron signal with smaller π0 and p̄ signals. Consequently, an

important question is the tendency of φ to decay to leptons. This is a simple matter of how φ couples to the standard

model. (A more detailed discussion of this can be found in [30].)

A scalar φ can couple with a dilaton-like coupling φFµνFµν , which will produce photons and hadrons (via gluons).

Such a possibility will generally fail to produce a hard e+e− spectrum. A more promising approach would be to mix

φ with the standard model Higgs with a term κφ2h†h. Should φ acquire a vev ⟨φ⟩ ∼ mφ, then we yield a small mixing

with the standard model Higgs, and the φ will decay into the heaviest fermion pair available. For mφ
<∼ 200 MeV

it will decay directly to e+e−, while for 200 MeV<∼ mφ
<∼ 250 MeV, φ will decay dominantly to muons. Above that

hadronic states appear, and pion modes will dominate. Both e+e− and µ+µ− give good fits to the PAMELA data,

while e+e− gives a better fit to PAMELA+ATIC.

A pseudoscalar, while not yielding a Sommerfeld enhancement, could naturally be present in this new sector. Such

a particle would typically couple to the heaviest particle available, or through the axion analog of the dilaton coupling

above. Consequently, the decays of a pseudoscalar would be similar to those of the scalar.

A vector boson will naturally mix with electromagnetism via the operator F ′
µνFµν . This possibility was considered

some time ago in [40]. Such an operator will cause a vector φµ to couple directly to charge. Thus, for mφ
<∼ 2mµ it

will decay to e+e−, while for 2mµ
<∼ mφ

<∼ 2mπ it will decay equally to e+e− and µ+µ−. Above 2mπ, it will decay

40% e+e−, 40%µ+µ− and 20%π+π−. At these masses, no direct decays into π0’s will occur because they are neutral

and the hadrons are the appropriate degrees of freedom. At higher masses, where quarks and QCD are the appropriate

degrees of freedom, the φ will decay to quarks, producing a wider range of hadronic states, including π0’s, and, at

suitably high masses mφ
>∼ 2 GeV, antiprotons as well [66]. In addition to XDM [18], some other important examples

of theories under which dark matter interacts with new forces include WIMPless models [41], mirror dark matter [42]

and secluded dark matter [43].

Note that, while these interactions between the sectors can be small, they are all large enough to keep the dark

and standard model sectors in thermal equilibrium down to temperatures far beneath the dark matter mass, and (as

mentioned in the previous section), we can naturally get the correct thermal relic abundance with a weak-scale dark

matter mass and perturbative annihilation cross sections. Kinetic equilibrium in these models is naturally maintained

down to the temperature TCMB ∼ mφ [44].

Models with Sommerfeld annihilation (Arkani-Hamed et al. 2008)
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for ordinary WIMP annihilations, mediated by W/Z/γ exchange).

Because of the presence of a new light state, the annihilation χχ → φφ can, and naturally will, be significant. In

order not to spoil the success of nucleosynthesis, we cannot have very light new states in this sector, with a mass <∼ 10

MeV, in thermal equilibrium with the standard model; the simplest picture is therefore that all the light states in the

dark sector have a mass ∼ GeV. Without any special symmetries, there is no reason for any of these particles to be

exactly stable, and the lightest ones can therefore only decay back to standard model states, indeed many SM states

are also likely kinematically inaccessible, thus favoring ones that produce high energy positrons and electrons. This

mechanism was first utilized in [19] to generate a large positron signal with smaller π0 and p̄ signals. Consequently, an

important question is the tendency of φ to decay to leptons. This is a simple matter of how φ couples to the standard

model. (A more detailed discussion of this can be found in [30].)

A scalar φ can couple with a dilaton-like coupling φFµνFµν , which will produce photons and hadrons (via gluons).

Such a possibility will generally fail to produce a hard e+e− spectrum. A more promising approach would be to mix

φ with the standard model Higgs with a term κφ2h†h. Should φ acquire a vev ⟨φ⟩ ∼ mφ, then we yield a small mixing

with the standard model Higgs, and the φ will decay into the heaviest fermion pair available. For mφ
<∼ 200 MeV

it will decay directly to e+e−, while for 200 MeV<∼ mφ
<∼ 250 MeV, φ will decay dominantly to muons. Above that

hadronic states appear, and pion modes will dominate. Both e+e− and µ+µ− give good fits to the PAMELA data,

while e+e− gives a better fit to PAMELA+ATIC.

A pseudoscalar, while not yielding a Sommerfeld enhancement, could naturally be present in this new sector. Such

a particle would typically couple to the heaviest particle available, or through the axion analog of the dilaton coupling

above. Consequently, the decays of a pseudoscalar would be similar to those of the scalar.

A vector boson will naturally mix with electromagnetism via the operator F ′
µνFµν . This possibility was considered

some time ago in [40]. Such an operator will cause a vector φµ to couple directly to charge. Thus, for mφ
<∼ 2mµ it

will decay to e+e−, while for 2mµ
<∼ mφ

<∼ 2mπ it will decay equally to e+e− and µ+µ−. Above 2mπ, it will decay

40% e+e−, 40%µ+µ− and 20%π+π−. At these masses, no direct decays into π0’s will occur because they are neutral

and the hadrons are the appropriate degrees of freedom. At higher masses, where quarks and QCD are the appropriate

degrees of freedom, the φ will decay to quarks, producing a wider range of hadronic states, including π0’s, and, at

suitably high masses mφ
>∼ 2 GeV, antiprotons as well [66]. In addition to XDM [18], some other important examples

of theories under which dark matter interacts with new forces include WIMPless models [41], mirror dark matter [42]

and secluded dark matter [43].

Note that, while these interactions between the sectors can be small, they are all large enough to keep the dark

and standard model sectors in thermal equilibrium down to temperatures far beneath the dark matter mass, and (as

mentioned in the previous section), we can naturally get the correct thermal relic abundance with a weak-scale dark

matter mass and perturbative annihilation cross sections. Kinetic equilibrium in these models is naturally maintained

down to the temperature TCMB ∼ mφ [44].
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FIG. 2: The positron fraction as a function of energy for the four annihilation modes considered here: χχ → φφ, followed by, (a)
φ → e+e−, (b) φ → µ+µ−, (c) φ → e+e−, µ+µ− (1:1), (d) φ → π+π− . The boost factor is defined relative to a cross section
⟨σv⟩ = 3 × 10−26cm3s−1 and ρ0 = 0.3 GeVcm−3. Such a boost reasonably can arise from a Sommerfeld enhancement, without
appeals to substructure.

give a good description of the WMAP “Haze” [55, 56, 57]
in the range of 5◦ − 15◦ from the galactic center. As a
consequence, a large diffuse ICS signal in the center of the
galaxy would be expected to be seen at Fermi/GLAST,
particularly for the higher mass particles [54]. However,
the highest mass scenarios can be constrained by HESS in
the event of cuspy profiles [47, 48, 58, 59] from signals in
the inner 100 pc, while radio signals can constrain these if
such cuspiness continues into the inner 0.1 pc, which may
require a flattening of the profile in the inner region [72].

In summary, a simple modification to the particle
physics model - namely, the inclusion of a new light bo-
son - naturally provides a simple explanation for the data.
A flattening of the positron fraction in future data from

PAMELA may indicate either the mass scale or the decay
mode of the φ. Alternatively, the spectrum may continue
to rise, in which case a signal may be seen in high energy
combined e+e− data at PAMELA, or other cosmic ray ex-
periments such as ATIC and PPB-BETS.
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FIG. 2: As in Fig. 1, but for dark matter which annihilates into a pair of intermediate states, ⌅, which proceed to decay to
e+e� (first row), to µ+µ� (second row), to ⇥+⇥� (third row), and to a 1:1:2 ratio of e+e�, µ+µ�, and ⇥+⇥� (fourth row).
For annihilations to 2e+2e� and a mass of 400 GeV (1.2 TeV), we have used a thermally averaged annihilation cross section of
⇥⇤v⇤ = 7.3� 10�25 cm3/s (6.2� 10�24 cm3/s). For annihilations to 2µ+2µ� and a mass of 800 GeV (2.5 TeV), we have used
a thermally averaged annihilation cross section of 3.4 � 10�24 cm3/s (2.6 � 10�23 cm3/s). For annihilations to 2⇥+2⇥� and
a mass of 1.0 TeV (3.0 TeV), we have used a thermally averaged annihilation cross section of 5.7 � 10�24 cm3/s (4.1 � 10�23

cm3/s). And for annihilations to a 1:1:2 ratio of e+e�, µ+µ�, and ⇥+⇥� final states with a mass of 500 GeV (1.6 TeV), we
have used a thermally averaged annihilation cross section of 1.5� 10�24 cm3/s (1.3� 10�23 cm3/s).

Models with Sommerfeld annihilation

IC, Dan Hooper, PRD 2013
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FIG. 5: The same as in Figs. 1, 2 and 4, but for a di�usion zone half-width of L = 8 kpc. For annihilations to 2µ+2µ� and
a mass of 1.0 TeV (2.5 TeV), we have used a thermally averaged annihilation cross section of 2.9 � 10�24 cm3/s (1.5 � 10�23

cm3/s). For annihilations to 2⇥+2⇥� and a mass of 1.0 TeV (3.0 TeV), we have used a thermally averaged annihilation cross
section of 3.5� 10�24 cm3/s (2.3� 10�23 cm3/s). For annihilations to a 1:1:2 ratio of e+e�, µ+µ�, and ⇥+⇥� final states with
a mass of 700 GeV (1.6 TeV), we have used a thermally averaged annihilation cross section of 1.6� 10�24 cm3/s (6.5� 10�24

cm3/s).

positrons.

IV. SUMMARY AND DISCUSSION

In this paper, we have revisited both annihilating dark
matter and pulsars as possible sources of the rising cos-

mic ray positron fraction. Using the newly published,
high precision data from AMS, we have considered a wide
range of dark matter models and cosmic ray propagation
models. We find that models in which the dark mat-
ter annihilates directly to leptons (e+e� or µ+µ�) are
no longer capable of producing the observed rise in the
positron fraction. Models in which the dark matter an-

Some inconsistency between AMS and Fermi leptonic data, suggesting the need of 
more high energy electrons above ~100 GeV.



Softer annihilation spectra are preferred from the combined CR lepton spectra
Also thinner diffusion halos demand even softer annihilation spectra. Thicker diffusion 
halos are somewhat preferred in agreement with indications from gamma-rays. 

Still some degeneracy between 
propagation properties and DM 
annihilation products. With AMS 
to release heavier nuclei CR 
spectra, these degeneracies will 
strongly we reduced.  	
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Figure 1. Left: Allowed ranges of parameter space for fits within the 1σ, 90% confidence, and 2σ error
bars to PAMELA only (in decreasing intensity of red), Fermi only (in decreasing intensity of gray), and for
simultaneous fits to both PAMELA and Fermi (in decreasing intensity of purple). Yellow crosses indicate
benchmark points. Right: As in left, with curves showing the boost factors for a range of mass splittings δ such
that Ωh2 = 0.1120 (dashed). Yellow lines, marked with asterisks, are chosen to pass through the benchmark
points for cases where the BF varies rapidly with δ. The CMB constraints are met for the solid portions of
the curves. Results are shown for 800 GeV ≤ mχ ≤ 3 TeV only. All preferred regions shown here assume
ρ0 = 0.4 GeV/cm3 and no contribution to the signal from DM substructure; any substructure correction (e.g.
[87]) will shift the preferred regions to lower boost factors. The δ = 0 curve is intended as a consistency check
with previous work, and so annihilation channels involving the dark Higgs were omitted from the computation
in this case.
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Physical models that work with all data (leptons/ antiprotons/ gamma-
rays/ microwave)
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FIG. 1: The positron-to-electron ratio (at energies > 240 GeV) expected in different primary electron spectrum models: the
solid line is for a smooth spectrum without hardening, while the dashed and dotted lines are for the spectra with hardening at
the energy E = 240 GeV (the indexes of hardened primary electron spectra are marked in the Figure). The PAMELA data
are taken from [19, 20].

the total cosmic ray protons above ∼ 240 GeV are dominated by the nearby source. The chance for one high energy
proton to produce one positron is P ∼ σppncτ/3 ∼ 3.5×10−3 (n/0.5 cm−3)(τ/1013 s), where σpp ≈ 70 mb is the total
cross section of production of pions in proton-proton collision, and n ∼ 0.1 − 1 cm−3 is the number density of the
local interstellar medium. The high energy proton loses about 20% energy in one proton-proton collision, roughly one
quarter converts into positron via the decay of the positively charged pion (i.e., π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ).
Hence at the energy of 240 GeV, the positron-to-proton ratio is ∼ P/201.7 ∼ 2 × 10−5 (n/0.5 cm−3)(τ/1013 s),
well below the value ∼ 3 × 10−4 inferred from the PAMELA data [20], where the E−2.7-like proton spectrum has
been taken into account. If the future AMS-02 data show no evidence for the hardening of the primary electron
spectrum at 240 GeV, the cosmic ray sources accounting for the nuclei excesses likely locate at a distance further
than R ∼ 1.7 kpc (D0/1028.5 cm2 s−1)1/2(utot/1 eV cm−3)−1/2(E/0.24 TeV)−1/3.

III. DIFFUSE GALACTIC γ−RAY EMISSION: CONSTRAINING THE PHYSICAL ORIGIN OF THE
POSITRON-TO-ELECTRON EXCESS

In this section we focus on the positron and electron excesses discovered by the ATIC, PAMELA, HESS and Fermi-
LAT and concentrate on the possible connection of current data with dark matter particles. Dark matter is a form of
matter necessary to account for gravitational effects observed in very large scale structures such as the flat rotation
curves of galaxies and the gravitational lensing of light by galaxy clusters that cannot be accounted for by the amount
of observed/normal matter [25]. The most widely discussed candidate is the so-called weakly interacting massive
particles (WIMPs), which may annihilate with each other or decay and then produce particle pairs such as photons,
electrons and positrons and so on [25]. That is why dark matter may be able to account for the observed positron
and electron excesses, as extensively examined in the literature [26–28].
Recently, the positron-to-electron ratio in the energy range 100−300 GeV measured by PAMELA has been reported

in [20]. In the lower energy range, the ratio data have been updated [19]. With these latest data we explore the allowed
WIMP parameter regions in both the annihilation model and the decay model. The electrons originated from dark
matter annihilation/decay will suffer from inverse Compton scattering of interstellar background photons (e.g., cosmic
microwave background, dust emission and star light) and boost these photons to GeV energies, becoming part of the
Galactic diffuse emission. Hence the Galactic diffuse emission detected by space telescopes can be used to constrain
the physical parameters of dark matter particles [25]. The latest bounds set by the Fermi-LAT Galactic diffuse

L. Feng et al. 
arXiv:1303.0530 (See also Hooper, 	
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FIG. 6: The same as in Figs. 1, 2, 4 and 5 but for a di�usion zone half-width of L = 8 kpc, and for broken power-law spectrum
of electrons injected from cosmic ray sources (dNe�/dEe� � E�2.65

e below 85 GeV and dNe�/dEe� � E�2.3
e above 85 GeV).

The cross sections are the same as given in the caption of Fig. 5. With this cosmic ray background, we show the dark matter
models compared to the measurements of the cosmic ray positron fraction and the overall leptonic spectrum. Even with the
presence of a break, there is a preference towards models with softer injection e± spectra; with the 1.6 TeV to e±, µ±,⇥± case
providing the best ⇤2/d.o.f. fit to the AMS (Fermi) lepton data of 0.82(0.51). The 2.5 TeV to 2µ+ 2µ�, gives a ⇤2/d.o.f. fit
of 1.32(1.07) and the 3.0 TeV to 2⇥+ 2⇥� a fit of 1.00(1.03). We remind that in the Fermi error-bars we do not include an
overall shift from the energy resolution uncertainty.

parsecs), and more slowly rotating (P = 390 ms). These
parameters, combined with their measurements of Ṗ , im-
ply that Geminga and B0656+14 have each lost approx-
imately 3 ⇥ 1049 erg and 1 ⇥ 1049 erg of rotational en-
ergy since their births, respectively. If 4-5% of this en-
ergy went into the production and acceleration of ener-
getic e+e� pairs, then these pulsars could be responsi-
ble for the observed rise in the cosmic ray positron frac-
tion [22, 23]. If we combine these two sources with the
somewhat smaller contribution expected from the sum
of all more distant pulsars [22], we estimate that if 3-
4% of the total energy from pulsars goes into energetic
pairs, this would be su⇤cient to account for the observed
positrons.

IV. SUMMARY AND DISCUSSION

In this paper, we have revisited both annihilating dark
matter and pulsars as possible sources of the rising cos-
mic ray positron fraction. Using the newly published,
high precision data from AMS, we have considered a wide
range of dark matter models and cosmic ray propagation
models. We find that models in which the dark mat-
ter annihilates directly to leptons (e+e� or µ+µ�) are
no longer capable of producing the observed rise in the
positron fraction. Models in which the dark matter an-
nihilates into light intermediate states which then decay
into combinations of muons and charged pions, however,
can accommodate the new data (see Fig. 6). In those
dark matter models still capable of generating the ob-
served positron excess, the dark matter’s mass and anni-
hilation cross section fall in the range of ⇤1.5-3 TeV and

⌅⇥v⇧ ⇤ (6� 23)⇥ 10�24 cm3/s.
We have also considered pulsars as a possible source

of the observed positrons. In particular, we find that for
reasonable choices of spectral parameters and spatial dis-
tributions, the sum of all pulsars in the Milky Way could
account for the observed positrons (see Fig. 8) if, on av-
erage, 10-20% of their total energy goes into the produc-
tion and acceleration of electron-positron pairs (assuming
a birth rate of one per century throughout the Galaxy,
each with an average total energy of 1049). It may also be
the case that a small number of nearby and young pulsars
(most notably Geminga and B0656+14) could dominate
the local cosmic ray positron flux at energies above sev-
eral tens of GeV. Taking into account these two excep-
tional sources, we estimate that if 3-4% of the total en-
ergy from pulsars goes into energetic pairs, these objects
could be responsible for the observed positron fraction.
Currently, we cannot yet discriminate between dark

matter and pulsars as the source of the observed positron
excess. We are hopeful, however, that future data from
AMS may change this situation. In addition to contin-
uing to improve the precision of their measurement of
the positron fraction and extending this measurement to
higher energies, AMS will also measure with unprece-
dented precision a number of secondary-to-primary ratios
of cosmic ray nuclei species, which can be used to con-
strain many aspects of the underlying cosmic rays propa-
gation model. Of particular importance is the 10Be/9Be
ratio, for which existing measurements are limited to en-
ergies below 2 GeV (kinetic energy per nucleon), and with
large errors (for a compilation of such measurements, see
Tables I and II of Ref. [63]). In contrast, AMS is ex-
pected to measure this ratio with much greater precision,
and up to energies of ⇤10 GeV. This information will

IC, Dan Hooper, PRD 2013
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TABLE IV: Fitting results of DM annihilation into µ+µ− with proton spectrum fixed

I-a II-a

best mean best mean

log(Ae
a) −8.915 −8.915 ± 0.003 −8.908 −8.915± 0.007

γ1 1.871 1.853 ± 0.044 1.881 1.864 ± 0.038

γ2 2.828 2.830 ± 0.007 2.879 2.890 ± 0.014

log(pebr/MeV) 3.577 3.569 ± 0.043 3.662 3.669 ± 0.040

log(mχ/GeV) 3.369 3.367 ± 0.040 2.460 2.483 ± 0.047

log(σv/cm3s−1) −22.318 −22.316 ± 0.068 −24.065 −24.064 ± 0.074

ce+ 2.409 2.411 ± 0.026 2.553 2.544 ± 0.047

φ/MV 998 993 ± 6 998 980 ± 17

aNormalization at 25 GeV in unit of cm−2s−1sr−1MeV−1.

TABLE V: Fitting results of DM annihilation into τ+τ− with proton spectrum fixed

I-a II-a

best mean best mean

log(Ae
a) −8.913 −8.917 ± 0.004 −8.911 −8.914± 0.008

γ1 1.864 1.852 ± 0.052 1.785 1.788 ± 0.078

γ2 2.809 2.807 ± 0.008 2.842 2.843 ± 0.016

log(pebr/MeV) 3.550 3.553 ± 0.047 3.595 3.612 ± 0.060

log(mχ/GeV) 3.699 3.687 ± 0.044 2.804 2.802 ± 0.050

log(σv/cm3s−1) −21.641 −21.668 ± 0.071 −23.189 −23.199 ± 0.062

ce+ 2.347 2.322 ± 0.035 2.359 2.351 ± 0.084

φ/MV 999 981± 16 943 931 ± 43

aNormalization at 25 GeV in unit of cm−2s−1sr−1MeV−1.
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FIG. 5: 1σ and 2σ confidence regions on the DM mass and cross section plane, for the fits I-a and II-a respectively. The left
panel is for µ+µ− channel, and the right panel is for τ+τ− channel. The solid lines show the 95% upper limit of Fermi γ-ray
observations of the Galactic center (with normalization of the local density corrected) [59] and dwarf galaxies [60].

the fit II-a (i.e., without Fermi/HESS data). It is shown
that the electron spectrum shows an almost featureless
behavior and the extra component is difficult to be iden-
tified from the pure electron spectrum. It is more promi-
nent to see the extra component in the positron spec-

trum, which has a very hard spectrum (∼ E−2.8) above
∼ 10 GeV. The following measurement of the positron
and electron fluxes by AMS-02 can directly test such re-
sults.

Yuan et al arXiv:1304.1482
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Figure 13: Left: FERMI e+ + e� energy spectrum comported to the DM best fit favoured
by AMS e+ data. Right: Fits of di�erent DM annihilation channels to the e+ data and
to the e++ e� data. The labels on each curve indicate the primary annihilation channel.

DM models predict that the flattening of the e+/(e+ + e�) energy spectrum should turn
into a drop of the positron fraction, because annihilations of DM with mass M cannot
produce e± with energies larger than M . This drop is not supported by FERMI data
on the e+ + e� spectrum, which (within the � 6% uncertainties on the data-points) is
smooth up to about 1 TeV, with no hint of a � 25% decrease. Fig. 13a exemplifies how
the drop below 1 TeV hinted by AMS e+ data within DM models would give a decrease
not present in the FERMI data. On the contrary, the global set of e+ + e� data hints
to a decrease at a larger energy. Fig. 13b (which updates fig. 11 in the original version
of this paper) shows that, as a consequence, in a global fit, FERMI e+ + e� data favor a
DM about 3 times heavier than AMS e+ data.

Rather that indulging in speculations about astrophysical backgrounds that could
partially compensate for the DM drop, we point out that AMS can easily clarify the issue
by performing a very precise measurement of the e+ + e� spectrum.

Finally, we comment on the compatibility of the DM interpretation of the rising
positron fraction with constraints from observations of � cosmic rays. In fig. 13 we show
representative �-ray bounds (the constraints are taken from [2A, 3A], more recent anal-
yses find similar or slightly more stringent bounds). We see that the new fit region of
AMS shows some tension with �-ray data (in the case of annihilations into µ+µ�) or it
is rather clearly excluded (in the case of annihilations into ⇤+⇤�). We have chosen a
benchmark NFW galactic Dark Matter profile; choosing shallower profiles the constraints
become looser.

Furthermore, we recall that observations of the cosmic microwave background (CMB)
imposes bounds on DM annihilations (based on the fact that they would have re-ionised

26

Cirelli et al arXiv:0809.2409	

(AMS updated)
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Significance:
1Σ 2Σ 3Σ 4Σ 5Σ

FIG. 2: Contours of the minimum significance level with which a given DDM ensemble is consistent with AMS-02 data,
plotted within the (m0,α + γ) DDM parameter space for α = −3 (left panel) and α = −2 (right panel). The colored
regions correspond to DDM ensembles which successfully reproduce the AMS-02 data while simultaneously satisfying all of the
applicable phenomenological constraints outlined in Sect. IV, while the white regions of parameter space correspond to DDM
ensembles which either cannot simultaneously satisfy these constraints or which fail to match the AMS-02 positron-excess data
at the 5σ significance level or greater. The slight difference between the results shown in the two panels is a consequence of
the differences in the CMB constraints for the two corresponding values of α.

FIG. 3: Predicted combined fluxes Φ
e
+ +Φ

e
− (left panel) and positron fractions Φe+/(Φe

+ +Φ
e
− ) (right panel) corresponding

to the DDM parameter choices lying within those regions of Fig. 2 for which our curves agree with AMS-02 data to within 3σ.
These curves are therefore all consistent with current combined-flux data to within 3σ and also consistent with current positron-
fraction data to within 3σ (with the color of the curve indicating the precise quality of fit, using the same color scheme in
Fig. 2). These curves are also consistent with all other applicable phenomenological constraints discussed in Sect. IV. However,
despite these constraints, the behavior of the positron-fraction curves beyond E

e
± ∼ 350 GeV is entirely unconstrained except

by the internal theoretical structure of the DDM ensemble. Their relatively flat shape in this energy range thus serves as a
prediction (and indeed a “smoking gun”) of the DDM framework. Data from AMS-02 [1], HEAT [2], AMS-01 [3], PAMELA [6],
FERMI [7, 9], PBB-BETS [45], ATIC [46], and HESS [47] are also shown for reference.
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Significance:
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FIG. 2: Contours of the minimum significance level with which a given DDM ensemble is consistent with AMS-02 data,
plotted within the (m0,α + γ) DDM parameter space for α = −3 (left panel) and α = −2 (right panel). The colored
regions correspond to DDM ensembles which successfully reproduce the AMS-02 data while simultaneously satisfying all of the
applicable phenomenological constraints outlined in Sect. IV, while the white regions of parameter space correspond to DDM
ensembles which either cannot simultaneously satisfy these constraints or which fail to match the AMS-02 positron-excess data
at the 5σ significance level or greater. The slight difference between the results shown in the two panels is a consequence of
the differences in the CMB constraints for the two corresponding values of α.

FIG. 3: Predicted combined fluxes Φ
e
+ +Φ

e
− (left panel) and positron fractions Φe+/(Φe

+ +Φ
e
− ) (right panel) corresponding

to the DDM parameter choices lying within those regions of Fig. 2 for which our curves agree with AMS-02 data to within 3σ.
These curves are therefore all consistent with current combined-flux data to within 3σ and also consistent with current positron-
fraction data to within 3σ (with the color of the curve indicating the precise quality of fit, using the same color scheme in
Fig. 2). These curves are also consistent with all other applicable phenomenological constraints discussed in Sect. IV. However,
despite these constraints, the behavior of the positron-fraction curves beyond E

e
± ∼ 350 GeV is entirely unconstrained except

by the internal theoretical structure of the DDM ensemble. Their relatively flat shape in this energy range thus serves as a
prediction (and indeed a “smoking gun”) of the DDM framework. Data from AMS-02 [1], HEAT [2], AMS-01 [3], PAMELA [6],
FERMI [7, 9], PBB-BETS [45], ATIC [46], and HESS [47] are also shown for reference.
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tonic decays. We also demonstrate that most of the vi-
able DDM parameter space leads to the prediction of a
positron fraction which levels off and remains roughly
constant out to energies of approximately 1 TeV. Even
though (as we shall see) there exist other regions of viable
DDM parameter space for which the predicted positron
excess can experience a downturn (or even an oscillation!)
as a function of energy, we shall explain why we neverthe-
less believe that the existence of a plateau in the positron
fraction can serve as a “smoking gun” for the Dynamical
Dark Matter framework as a whole. Finally, in Sect. VI,
we conclude with a summary of our results and a dis-
cussion of their implications for distinguishing between
decaying DDM ensembles and other proposed explana-
tions for the positron excess, including those involving
purely traditional astrophysical sources.

II. THE DDM ENSEMBLE: FUNDAMENTAL
ASSUMPTIONS

Dynamical Dark Matter (DDM) [21, 22] is an alter-
native framework for dark-matter physics in which the
requirement of dark-matter stability is replaced by a
balancing of lifetimes against cosmological abundances
across an ensemble of individual dark-matter components
with different masses, lifetimes, and abundances. It is
this DDM ensemble which collectively serves as the dark-
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where α and γ are general power-law exponents. While
the existence of such scaling relations is not a fundamen-
tal requirement of the DDM framework, relations such as
these do arise naturally in a number of explicit realistic
DDM models [21, 22, 24] and allow us to encapsulate the
structure of an entire DDM ensemble in terms of only
a few well-motivated parameters. Note that the decay
width Γn in Eq. (2.2) refers to (or is otherwise assumed
to be dominated by) the decay of φn to SM states, and
likewise Ωn denotes the cosmological abundance that φn

would have had at the present time if it had been abso-
lutely stable. Indeed, because the DDM framework al-
lows each individual φn component to decay at a different
time, the corresponding abundances Ωn generally evolve
in a non-trivial manner across the DDM ensemble [21],
and thus no single scaling relation can hold across the
ensemble for all times.
Given these scaling relations, our DDM ensem-

ble is in principle described by the seven parameters
{α, γ, δ,m0,Ω0,Γ0,∆m}. For convenience, in this paper
we shall fix δ = 1 and ∆m = 1 GeV; these choices en-
sure that our DDM ensemble transcends a mere set of
individual dark-matter components and observationally
acts as a “continuum” of states relative to the scale set
by the energy resolution of the relevant cosmic-ray de-
tectors. We shall also fix Ω0 by requiring that the en-
semble carry the entire observed dark-matter abundance
ΩCDM; this will be discussed further below. Of the re-
maining four parameters, we shall treat {α, γ,m0} as free
parameters and eventually survey over different possibil-
ities within the ranges −3 ≤ α < 0, −1 ≤ γ ≤ 2.5, and
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how each φn decays to Standard-Model states, we will
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as a function of energy, we shall explain why we neverthe-
less believe that the existence of a plateau in the positron
fraction can serve as a “smoking gun” for the Dynamical
Dark Matter framework as a whole. Finally, in Sect. VI,
we conclude with a summary of our results and a dis-
cussion of their implications for distinguishing between
decaying DDM ensembles and other proposed explana-
tions for the positron excess, including those involving
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In this paper, we explore the possibility that the positron fraction reported by PAMELA may be generated by
mature pulsars. Gamma-ray pulsars are predicted to produce energetic electron-positron pairs with a harder spectrum
than that from secondary cosmic-ray induced origin, leading to the possibility that such sources may dominate the
cosmic ray positron spectrum at high energies. We calculate the spectrum of such particles from known local pulsars
(Geminga and B0656+14), and from the sum of all pulsars distributed throughout the Milky Way. As found in
earlier studies [16], we find that both local pulsars and the sum of pulsars distributed throughout the Milky Way can
contribute significantly to the observed spectrum. At 10 GeV, we estimate that on average only ∼20% of the cosmic
ray positrons originate from pulsars within 500 parsecs from the Solar System. If gamma-ray pulsars are formed at a
rate of ∼4 per century in the Milky Way, we find that the observed flux of ∼10-20 GeV positrons could be plausibly
generated in such objects. Similar conclusions were derived in [17, 18]. Above ∼50 GeV, however, the positron
spectrum is likely to be dominated by a single or small number of nearby pulsars. If the high energy electron-positron
spectrum is dominated by a single nearby source, it opens the possibility of detecting a dipole anisotropy in their
angular distribution (see also [19]). We find that such a feature could potentially be detected by the Fermi gamma-ray
space telescope (formerly known as GLAST) [20], thus enabling a powerful test to discriminate between the pulsar
and dark matter origins of the observed cosmic ray positron excess.

The remainder of this article is structured as follows: In Sec. II, we review the known properties of pulsars and
consider them as sources of high energy electron-positron pairs. In Sec. III, we consider the nearby pulsars Geminga
and B0656+14 and discuss their potential contributions to the cosmic ray positron spectrum. In Sec. IV, we calculate
the expected dipole anisotropy from nearby pulsars and compare this to the sensitivity of the Fermi gamma-ray space
telescope. We summarize and draw our conclusions in Sec. V.

II. PULSARS AS SOURCES OF ELECTRON-POSITRON PAIRS

In both models of polar gap [21, 22] and outer gap [23], electrons can be accelerated in different regions of the
pulsar magnetosphere and induce an electromagnetic cascade through the emission of curvature radiation, which in
turn results in production of photons which are above threshold for pair production in the strong pulsar magnetic
field. This process results in lower energy electrons and positrons that can escape the magnetosphere either through
the open field lines [25] or after joining the pulsar wind [18]. In this second case, the electrons and positrons lose
part of their energy adiabatically because of the expansion of the wind. The energy spectrum injected by a single
pulsar depends on the environmental parameters of the pulsar, but some attempts to calculate the average spectrum
injected by a population of mature pulsars suggest that the spectrum may be relatively hard, having a slope of
∼1.5-1.6 [18]. This spectrum, however, results from a complex interplay of individual pulsar spectra, of the spatial
and age distributions of pulsars in the Galaxy, and on the assumption that the chief channel for pulsar spin down
is magnetic dipole radiation. Due to the related uncertainties, variations from this injection spectra cannot be ruled
out. Typically, one concentrates the attention on pulsars of age ∼105 years because younger pulsars are likely to still
be surrounded by their nebulae, which confine electrons and positrons and thus prevent them from being liberated
into the interstellar medium until later times.

Still, some energetics considerations can be done with simple analytical models; this will also help the understanding
of arguments developed in the next Section. The rate of energy injection from a single pulsar in the form of pairs is
limited by its spin-down power (the rate of energy loss corresponding to the slowing rate of rotation). Assuming that
this is simply due to the emission of magnetic dipole radiation, the maximum rate of energy injection can be written
as (see e.g. [24]):

Ė = −
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sR6
sΩ

4

6c3
≈ 1031B2

12R
6
10P

−4 erg s−1, (1)

where B12 = Bs/1012G is the magnetic field at the surface of the star, R10 = Rs/10km is the radius of the star and P
is the period of the star in seconds. The period P (gyration frequency Ω) increases (decreases) with time as a result
of the spin-down, according to

Ω(t) =
Ω0

(1 + t/τ0)
1/2

, (2)

where τ0 = 3c3I/(B2
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2
0), I = (2/5)MsR2

s is the moment of inertia of the star with mass Ms and Ω0 = 2π/P0 is
the initial spin frequency of the pulsar and P0 is the initial period. Numerically, this yields:
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It follows that the upper limit to the rate of energy deposit in the form of electron-positron pairs is
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In terms of the total energy injected in a time t after the pulsar birth,
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where t5 is the time in units of 105 years. Therefore, the total energy that a mature pulsar (t ≫ τ0) has injected in
the form of magnetic dipole radiation saturates to

Etot ≈
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10P

−2
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In the same assumption of a mature pulsar, we also have that Ω0 ≈ Ω(t/τ0)1/2, where Ω is the gyration frequency
measured today. For instance, for the Geminga pulsar (P = 230 ms) t ≈ 370, 000 years and τ ≈ 104 years (using
B12 = 1.6 and R10 = 1.5), one has Ω0 ≈ 166 s−1 (P0 ≈ 40 ms). For these values of the parameters, the total energy
output of the pulsar is rather large, Etot ≈ 1049 erg, which could easily account for the high energy positron flux. It
is worth stressing, however, that only a small fraction of this energy will eventually end up in the form of escaping
electron-positron pairs, and thus this number should be treated as an absolute upper limit on the pair luminosity of
a single pulsar. Qualitatively, the combined effect of a declining absolute luminosity [Eq. (4)] and of an increasing
escape probability conspire in singling out typical ages of ∼105 years for the pulsars expected to contribute maximally
to the positron flux.

To proceed in a more quantitative way towards the calculation of the overall spectrum from Galactic pulsars, one
needs to adopt a model for the e+−e− acceleration and escape probability from a single pulsar with a given magnetic
field, period, etc. and then integrate over a Monte Carlo distribution of these typical parameters in a Galactic Pulsar
population. The resulting injection spectrum we adopt follows from such a calculation in Ref. [18]:

dNe

dEe
≈ 8.6 × 1038Ṅ100 (Ee/GeV)−1.6 exp (−Ee/80 GeV)GeV−1 s−1, (7)

where Ṅ100 is the rate of pulsar formation in units of pulsars per century. This expression corresponds to an average
energy output in electron-positron pairs of approximately 6 × 1046 erg per pulsar, i.e. to efficiency ! 1% compared
with the upper bound derived above. In the following, we inject this spectrum according to the spatial distribution
of pulsars given in Refs. [18, 26].

Once electrons and positrons are produced, diffusion in the Galactic Magnetic Field regulates their motion. Unlike
previous approaches to the problem, mostly based on a simple implementation of the leaky box model, we calculate
the effects of propagation by solving the transport equation for electrons, including synchrotron and inverse Compton
scattering losses:

∂

∂t

dne

dEe
= ▽⃗ ·

[

K(Ee)▽⃗
dne

dEe

]

+
∂

∂Ee

[

B(Ee)
dne

dEe

]

+ Q(Ee, x⃗), (8)

with a free escape boundary condition at 4 kpc above and below the Galactic Plane. Here dne/dEe is the number
density of electrons/positrons per unit energy, K(Ee) is the diffusion coefficient and B(Ee) is the rate of energy
loss. We adopt K(Ee) ≡ K0(1 + Ee/(3 GeV))δ with K0 = 3.4 × 1028 cm2/s and δ = 0.6, and B(Ee) = −bE2

e with
b = 10−16GeV−1s−1. Q corresponds to the source term described above.

In Fig. 1, we show the spectrum of positrons and the positron fraction resulting from the sum of all pulsars
throughout the Milky Way. In the upper panels, we show results for different rates of pulsar birth (one per 10, 25,
or 100 years). The dashed line represents the baseline result neglecting the contribution from pulsars, including only
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In the same assumption of a mature pulsar, we also have that Ω0 ≈ Ω(t/τ0)1/2, where Ω is the gyration frequency
measured today. For instance, for the Geminga pulsar (P = 230 ms) t ≈ 370, 000 years and τ ≈ 104 years (using
B12 = 1.6 and R10 = 1.5), one has Ω0 ≈ 166 s−1 (P0 ≈ 40 ms). For these values of the parameters, the total energy
output of the pulsar is rather large, Etot ≈ 1049 erg, which could easily account for the high energy positron flux. It
is worth stressing, however, that only a small fraction of this energy will eventually end up in the form of escaping
electron-positron pairs, and thus this number should be treated as an absolute upper limit on the pair luminosity of
a single pulsar. Qualitatively, the combined effect of a declining absolute luminosity [Eq. (4)] and of an increasing
escape probability conspire in singling out typical ages of ∼105 years for the pulsars expected to contribute maximally
to the positron flux.

To proceed in a more quantitative way towards the calculation of the overall spectrum from Galactic pulsars, one
needs to adopt a model for the e+−e− acceleration and escape probability from a single pulsar with a given magnetic
field, period, etc. and then integrate over a Monte Carlo distribution of these typical parameters in a Galactic Pulsar
population. The resulting injection spectrum we adopt follows from such a calculation in Ref. [18]:
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where Ṅ100 is the rate of pulsar formation in units of pulsars per century. This expression corresponds to an average
energy output in electron-positron pairs of approximately 6 × 1046 erg per pulsar, i.e. to efficiency ! 1% compared
with the upper bound derived above. In the following, we inject this spectrum according to the spatial distribution
of pulsars given in Refs. [18, 26].

Once electrons and positrons are produced, diffusion in the Galactic Magnetic Field regulates their motion. Unlike
previous approaches to the problem, mostly based on a simple implementation of the leaky box model, we calculate
the effects of propagation by solving the transport equation for electrons, including synchrotron and inverse Compton
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with a free escape boundary condition at 4 kpc above and below the Galactic Plane. Here dne/dEe is the number
density of electrons/positrons per unit energy, K(Ee) is the diffusion coefficient and B(Ee) is the rate of energy
loss. We adopt K(Ee) ≡ K0(1 + Ee/(3 GeV))δ with K0 = 3.4 × 1028 cm2/s and δ = 0.6, and B(Ee) = −bE2

e with
b = 10−16GeV−1s−1. Q corresponds to the source term described above.

In Fig. 1, we show the spectrum of positrons and the positron fraction resulting from the sum of all pulsars
throughout the Milky Way. In the upper panels, we show results for different rates of pulsar birth (one per 10, 25,
or 100 years). The dashed line represents the baseline result neglecting the contribution from pulsars, including only
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Electrons accel. inside the magnetosphere, produce ICS gamma-rays, which in turn	

in the presence of strong magnetic fields pair produce electrons positrons further 
accelerated inside the magnetosphere. In addition electrons and positrons can be 
accelerated in the termination shock of the pulsar(also of the SNR) and the ISM. 
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FIG. 1: The spectrum of cosmic ray positrons (left) and the positron fraction (right) resulting from the sum of all pulsars
throughout the Milky Way. Also shown as a dashed line is the prediction for secondary positrons (and primary and secondary
electrons in the right frames) as calculated in Ref. [27]. In the right frames, the measurements of HEAT [3] (light green and
magenta) and measurements of PAMELA [2] (dark red) are also shown. We have used the injected spectrum reported in
Eq. (7). In the lower frames, the upper (lower) dotted line represents the case in which the injection rate within 500 parsecs of
the Solar System is doubled (neglected), providing an estimate the variance resulting from the small number of nearby pulsars
contributing to the spectrum.

the positrons produced as secondaries in the hadronic interaction of cosmic rays. In the right frames, the positron
ratio is obtained considering, besides secondary leptons, also the primary electrons accounted as in [27], to ease the
comparison with previous literature. In the right frames, the measurements of HEAT [3] (light green and magenta)
and the measurements of PAMELA [2] (dark red) are also shown.

In the lower frames of Fig. 1 we show the positron spectrum and the positron fraction for Ṅ100 = 4 if the injection
rate within 500 parsecs of the Solar System is doubled (upper dotted curve) or neglected (lower dotted curve). This
provides an estimate of the relative importance of average nearby sources compared to the contribution from more
distant pulsars. We will discuss this issue further in Sec. III.

Interestingly, the best fit to the HEAT and PAMELA data appears to be obtained for Ṅ100 = 4, namely about one
pulsar birth each ∼ 25 years. It is worth noting that this number is only slightly higher than the typical estimates of
the galactic core collapse supernovae rate, from which pulsars are formed. This rate has been estimated in a variety of
ways, including from the scaling of rates in external galaxies, from the measured gamma-ray flux from galactic 26Al,
from historical observations of galactic supernovae, and from empirical upper limits from neutrino observatories (for
a review, see Ref. [28]). Also note that since the primary electron flux is determined from a fit to the absolute flux,
which has uncertainties as large as ±50% around 10 GeV (see the cosmic ray review in Ref. [29]), the best-fit value
of Ṅ100 extracted from the ratio is affected by at least an error as large. Additionally, in principle our numerical
results could be modified if a different normalization for the diffusion coefficient were chosen; yet, the constraint on
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FIG. 1: Time evolution of e+e− flux on the Earth from a

pulsar at a distance of 1 kpc with ηW0 = 3 × 1049 erg, an

injection index n = 1.6, and an injection cutoff M = 10 TeV.

The diffusion and energy losses are described in Sec. IIA.

We assume the delta-function approximation for the emission

from the pulsar, Q(x, E, t) = Q(E)δ(x)δ(t). The flux from a

young pulsar (the 3 kyr curve on the right) has an exponential

suppression because the electrons have not had enough time

to diffuse from the pulsar to the Earth. The cutoff moves

to the left due to cooling of electrons and becomes sharper.

After reaching a maximal value, the flux decreases since the

electrons diffuse over a large volume.

matter of convenience, we choose D0 = 3 × 1028cm2s−1,

δ = 0.4, b0 = 1.6 × 10−16GeV−1s−1, W0 = 1050 erg, and

M = 10 TeV. With this choice, our fit to the e+e− data

will determine n, η, and t. If some of the parameters

are known independently, e.g., the propagation model,

the energy losses, the age of the pulsar etc., this ap-

proach becomes more constrained and more predictive.

As shown in Fig. 2, the expected flux from a pulsar

with ηW0 ≈ 3 × 1049 erg, n = 1.6, distance 0.3 kpc, and

age 200 kyr reproduces the positron fraction measured

by PAMELA and is a good fit to the cosmic-ray electron

spectrum measured by ATIC, Fermi, and HESS below

∼ 1 TeV. This suggests that the anomaly in the e+e−

flux could be due to a single pulsar. However, given the

considerable number of known nearby, energetic pulsars

[28], it is unlikely that the flux from any single pulsar is

significantly larger than the flux from all such pulsars.

In the next section, we will derive the expected flux of

electrons and positrons from a collection of pulsars.

III. FLUX FROM A COLLECTION OF

PULSARS

In this section, we derive the e+e− flux from a con-

tinuous distribution of pulsars and compare it with the
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FIG. 2: Electron and positron flux from a single pulsar to-

gether with a primary background ∼ E−3.3 and a secondary

background ∼ E−3.6. The pulsar is at a distance of 0.3 kpc.

It has ηW0 = 2.2 × 1049 erg, age of 200 kyr, and injection

index and cutoff n = 1.6 and M = 10 TeV, respectively. The

propagation parameters are described in Sec. II A. The cutoff

M ≫ 1 TeV results in a significant bump around 1 TeV which

is consistent with the ATIC data. For a smaller injection cut-

off M ∼ 1 TeV, the flux from the pulsar takes the form of a

power law with an exponential cutoff that can be used to fit

the Fermi and PAMELA data (see, e.g., [37]).

predicted flux from the pulsars in the ATNF catalog [28].

A. Flux derivation

We assume that pulsars are homogeneously distributed

in the galactic plane and are born at a constant rate Nb

[35]. The “continuous” distribution of pulsars is defined

as the average of all possible realizations of pulsar dis-

tributions. This results in a source function constant in

time, localized in the vertical direction, and homogeneous

in the galactic plane

Qdistr(x, E, t) = J0 E−n e−
E
M δ(z) (23)
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The characteristic travel time is therefore

t ! 100 kyr for E " 2 TeV. (5)

The characteristic distance an electron travels before

cooling to energy E is the diffusion distance x2
diff =

4D(E)t, where t = 1
b0E ,

xdiff " 5 kpc for E ! 10 GeV. (6)

B. Green function for diffusion-loss propagation

In general, the evolution of the energy density ρ of elec-

trons moving in random paths and losing energy can be

described by the following diffusion-loss equation [29][32]

∂ρ

∂t
=

∂

∂E
(b(E)ρ) +

∂

∂xi
(D(E)

∂

∂xi
ρ) + Q(x, E, t), (7)

where Q ≡ dN/(dEdtd3x) is the energy density of elec-

trons injected by the source. In principle, one can also

take into account reacceleration, convection, and decays

(collisions), but for electrons with E > 10 GeV these

contributions can be ignored.

The general solution to Eq. (7) is found in [32][33].

To solve Eq. (7) for a general source, one introduces the

Green function G(x, E, t; x0, E0, t0) which satisfies

∂G

∂t
−

∂

∂E
(b(E)G)− D(E)

∂2G

∂x2
=

δ(x − x0)δ(E − E0)δ(t − t0). (8)

Then, the solution to (7) is

ρ(x, E, t) =
∫

d3x0

∫

dE0

∫

dt0 G(x, E, t; x0, E0, t0)

·Q(x0, E0, t0). (9)

The Green function can be derived as follows. One can

define the variables t′ = t − τ and λ [32][33], where

τ ≡ τ(E, E0) =

∫ E0

E

dE′

b(E′)
, (10)

λ ≡ λ(E, E0) =

∫ E0

E

D(E′)dE′

b(E′)
. (11)

The variable t′(t, E) is invariant with respect to the dif-

ferential operator ∂t − b(E)∂E . In fact, D−1(E)(∂t −
b(E)∂E) = ∂λ and Eq. (8) becomes the usual diffusion

equation in λ and x. The Green function is then [32][33]

G(x, E, t; x0, E0, t0) =
1

b(E)

1

(4πλ)3/2
e−

(x−x0)2

4λ

·δ(t − t0 − τ)θ(E0 − E). (12)

Equation (7) and the above Green function have a few

limitations. Both the ISM magnetic field and density of

IR and starlight photons vary in space. Consequently the

diffusion coefficient and the energy loss function depend

on the coordinates: D = D(E, x), b = b(E, x), and there

is no simple analytic solution to Eq. (7). In Appendix B

we calculate corrections to the predicted e+e− spectrum

at the Earth due to spatial variations in the energy loss

function.

C. Flux from a single pulsar

With the general Green function in hand, one can find

the density of electrons at any point in space for any

source. In this Section, we derive the expected flux of

electrons and positrons produced by a single pulsar.

The distances to pulsars are sufficiently large that we

can assume that pulsars are point sources. We also as-

sume that most of the pulsars’ rotational energy is lost

via magnetic dipole radiation [34] which eventually trans-

forms into the energy of electrons and positrons

Qpulsar(x, E, t) = Q(E)
1

τ

(

1 +
t

τ

)−2

θ(t) δ(x), (13)

where t is the pulsar age and x is its position. θ(t) is the

step function that ensures Qpulsar = 0 for t < 0. Note

that the pulsar spin-down time scale τ in this formula

and the variable introduced in (10) are unrelated. We

review the derivation of this formula in Appendix A.

At late times (t ≫ τ), the spin-down luminosity scales

as t−2. Consequently, most of the energy is emitted dur-

ing t ∼ τ . The pulsar spin-down time scale τ " 10 kyr is

much smaller than the typical electron propagation time

t ! 100 kyr. Consequently, we can take the limit τ → 0,

which results in

1

τ

(

1 +
t

τ

)−2

θ(t)

∣

∣

∣

∣

∣

τ→0

−→ δ(t). (14)

For pulsars with a significant PWN, the time dependence

in Eq. (13) does not describe the escape of electron and

positrons from the PWN into the ISM. However, for most

pulsars the lifetime of the PWN (t " 20 kyr; [24]) is

much smaller than the typical propagation time t ! 100

kyr [Eq. (5)]. Thus, the detailed time dependence of the

escape is not significant and the delta-function approxi-

mation in Eq. (14) is still valid.

We assume that the energy spectrum of particles in-

jected into the ISM Q(E) by a given pulsar has the form

Q(E) = Q0 E−n e−
E
M , (15)
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sume that most of the pulsars’ rotational energy is lost

via magnetic dipole radiation [34] which eventually trans-

forms into the energy of electrons and positrons

Qpulsar(x, E, t) = Q(E)
1

τ

(

1 +
t

τ

)−2

θ(t) δ(x), (13)

where t is the pulsar age and x is its position. θ(t) is the

step function that ensures Qpulsar = 0 for t < 0. Note

that the pulsar spin-down time scale τ in this formula

and the variable introduced in (10) are unrelated. We

review the derivation of this formula in Appendix A.

At late times (t ≫ τ), the spin-down luminosity scales

as t−2. Consequently, most of the energy is emitted dur-

ing t ∼ τ . The pulsar spin-down time scale τ " 10 kyr is

much smaller than the typical electron propagation time

t ! 100 kyr. Consequently, we can take the limit τ → 0,

which results in

1

τ

(

1 +
t

τ

)−2

θ(t)

∣

∣

∣

∣

∣

τ→0

−→ δ(t). (14)

For pulsars with a significant PWN, the time dependence

in Eq. (13) does not describe the escape of electron and

positrons from the PWN into the ISM. However, for most

pulsars the lifetime of the PWN (t " 20 kyr; [24]) is

much smaller than the typical propagation time t ! 100

kyr [Eq. (5)]. Thus, the detailed time dependence of the

escape is not significant and the delta-function approxi-

mation in Eq. (14) is still valid.

We assume that the energy spectrum of particles in-

jected into the ISM Q(E) by a given pulsar has the form

Q(E) = Q0 E−n e−
E
M , (15)

4

The characteristic travel time is therefore

t ! 100 kyr for E " 2 TeV. (5)

The characteristic distance an electron travels before

cooling to energy E is the diffusion distance x2
diff =

4D(E)t, where t = 1
b0E ,

xdiff " 5 kpc for E ! 10 GeV. (6)

B. Green function for diffusion-loss propagation

In general, the evolution of the energy density ρ of elec-

trons moving in random paths and losing energy can be

described by the following diffusion-loss equation [29][32]

∂ρ

∂t
=

∂

∂E
(b(E)ρ) +

∂

∂xi
(D(E)

∂

∂xi
ρ) + Q(x, E, t), (7)

where Q ≡ dN/(dEdtd3x) is the energy density of elec-

trons injected by the source. In principle, one can also

take into account reacceleration, convection, and decays
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b(E)∂E) = ∂λ and Eq. (8) becomes the usual diffusion

equation in λ and x. The Green function is then [32][33]

G(x, E, t; x0, E0, t0) =
1

b(E)

1

(4πλ)3/2
e−

(x−x0)2

4λ

·δ(t − t0 − τ)θ(E0 − E). (12)

Equation (7) and the above Green function have a few

limitations. Both the ISM magnetic field and density of

IR and starlight photons vary in space. Consequently the

diffusion coefficient and the energy loss function depend

on the coordinates: D = D(E, x), b = b(E, x), and there

is no simple analytic solution to Eq. (7). In Appendix B

we calculate corrections to the predicted e+e− spectrum

at the Earth due to spatial variations in the energy loss

function.

C. Flux from a single pulsar

With the general Green function in hand, one can find

the density of electrons at any point in space for any

source. In this Section, we derive the expected flux of

electrons and positrons produced by a single pulsar.

The distances to pulsars are sufficiently large that we

can assume that pulsars are point sources. We also as-

sume that most of the pulsars’ rotational energy is lost

via magnetic dipole radiation [34] which eventually trans-

forms into the energy of electrons and positrons

Qpulsar(x, E, t) = Q(E)
1

τ

(

1 +
t

τ

)−2

θ(t) δ(x), (13)

where t is the pulsar age and x is its position. θ(t) is the

step function that ensures Qpulsar = 0 for t < 0. Note

that the pulsar spin-down time scale τ in this formula

and the variable introduced in (10) are unrelated. We

review the derivation of this formula in Appendix A.

At late times (t ≫ τ), the spin-down luminosity scales

as t−2. Consequently, most of the energy is emitted dur-

ing t ∼ τ . The pulsar spin-down time scale τ " 10 kyr is

much smaller than the typical electron propagation time

t ! 100 kyr. Consequently, we can take the limit τ → 0,

which results in

1

τ

(

1 +
t

τ

)−2

θ(t)

∣

∣

∣

∣

∣

τ→0

−→ δ(t). (14)

For pulsars with a significant PWN, the time dependence

in Eq. (13) does not describe the escape of electron and

positrons from the PWN into the ISM. However, for most

pulsars the lifetime of the PWN (t " 20 kyr; [24]) is

much smaller than the typical propagation time t ! 100

kyr [Eq. (5)]. Thus, the detailed time dependence of the

escape is not significant and the delta-function approxi-

mation in Eq. (14) is still valid.

We assume that the energy spectrum of particles in-

jected into the ISM Q(E) by a given pulsar has the form

Q(E) = Q0 E−n e−
E
M , (15)

4

FIG. 1: The spectrum of cosmic ray positrons (left) and the positron fraction (right) resulting from the sum of all pulsars
throughout the Milky Way. Also shown as a dashed line is the prediction for secondary positrons (and primary and secondary
electrons in the right frames) as calculated in Ref. [27]. In the right frames, the measurements of HEAT [3] (light green and
magenta) and measurements of PAMELA [2] (dark red) are also shown. We have used the injected spectrum reported in
Eq. (7). In the lower frames, the upper (lower) dotted line represents the case in which the injection rate within 500 parsecs of
the Solar System is doubled (neglected), providing an estimate the variance resulting from the small number of nearby pulsars
contributing to the spectrum.

the positrons produced as secondaries in the hadronic interaction of cosmic rays. In the right frames, the positron
ratio is obtained considering, besides secondary leptons, also the primary electrons accounted as in [27], to ease the
comparison with previous literature. In the right frames, the measurements of HEAT [3] (light green and magenta)
and the measurements of PAMELA [2] (dark red) are also shown.

In the lower frames of Fig. 1 we show the positron spectrum and the positron fraction for Ṅ100 = 4 if the injection
rate within 500 parsecs of the Solar System is doubled (upper dotted curve) or neglected (lower dotted curve). This
provides an estimate of the relative importance of average nearby sources compared to the contribution from more
distant pulsars. We will discuss this issue further in Sec. III.

Interestingly, the best fit to the HEAT and PAMELA data appears to be obtained for Ṅ100 = 4, namely about one
pulsar birth each ∼ 25 years. It is worth noting that this number is only slightly higher than the typical estimates of
the galactic core collapse supernovae rate, from which pulsars are formed. This rate has been estimated in a variety of
ways, including from the scaling of rates in external galaxies, from the measured gamma-ray flux from galactic 26Al,
from historical observations of galactic supernovae, and from empirical upper limits from neutrino observatories (for
a review, see Ref. [28]). Also note that since the primary electron flux is determined from a fit to the absolute flux,
which has uncertainties as large as ±50% around 10 GeV (see the cosmic ray review in Ref. [29]), the best-fit value
of Ṅ100 extracted from the ratio is affected by at least an error as large. Additionally, in principle our numerical
results could be modified if a different normalization for the diffusion coefficient were chosen; yet, the constraint on
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The characteristic travel time is therefore

t ! 100 kyr for E " 2 TeV. (5)

The characteristic distance an electron travels before

cooling to energy E is the diffusion distance x2
diff =

4D(E)t, where t = 1
b0E ,

xdiff " 5 kpc for E ! 10 GeV. (6)

B. Green function for diffusion-loss propagation

In general, the evolution of the energy density ρ of elec-

trons moving in random paths and losing energy can be

described by the following diffusion-loss equation [29][32]

∂ρ

∂t
=

∂

∂E
(b(E)ρ) +

∂

∂xi
(D(E)

∂

∂xi
ρ) + Q(x, E, t), (7)

where Q ≡ dN/(dEdtd3x) is the energy density of elec-

trons injected by the source. In principle, one can also

take into account reacceleration, convection, and decays

(collisions), but for electrons with E > 10 GeV these

contributions can be ignored.

The general solution to Eq. (7) is found in [32][33].

To solve Eq. (7) for a general source, one introduces the

Green function G(x, E, t; x0, E0, t0) which satisfies

∂G

∂t
−

∂

∂E
(b(E)G)− D(E)

∂2G

∂x2
=

δ(x − x0)δ(E − E0)δ(t − t0). (8)

Then, the solution to (7) is

ρ(x, E, t) =
∫

d3x0

∫

dE0

∫

dt0 G(x, E, t; x0, E0, t0)

·Q(x0, E0, t0). (9)

The Green function can be derived as follows. One can

define the variables t′ = t − τ and λ [32][33], where
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∫ E0

E

dE′

b(E′)
, (10)
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. (11)

The variable t′(t, E) is invariant with respect to the dif-

ferential operator ∂t − b(E)∂E . In fact, D−1(E)(∂t −
b(E)∂E) = ∂λ and Eq. (8) becomes the usual diffusion

equation in λ and x. The Green function is then [32][33]
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1

b(E)

1

(4πλ)3/2
e−
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4λ

·δ(t − t0 − τ)θ(E0 − E). (12)

Equation (7) and the above Green function have a few

limitations. Both the ISM magnetic field and density of

IR and starlight photons vary in space. Consequently the

diffusion coefficient and the energy loss function depend

on the coordinates: D = D(E, x), b = b(E, x), and there

is no simple analytic solution to Eq. (7). In Appendix B

we calculate corrections to the predicted e+e− spectrum

at the Earth due to spatial variations in the energy loss

function.

C. Flux from a single pulsar

With the general Green function in hand, one can find

the density of electrons at any point in space for any

source. In this Section, we derive the expected flux of

electrons and positrons produced by a single pulsar.

The distances to pulsars are sufficiently large that we

can assume that pulsars are point sources. We also as-

sume that most of the pulsars’ rotational energy is lost

via magnetic dipole radiation [34] which eventually trans-

forms into the energy of electrons and positrons

Qpulsar(x, E, t) = Q(E)
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τ

(
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)−2

θ(t) δ(x), (13)

where t is the pulsar age and x is its position. θ(t) is the

step function that ensures Qpulsar = 0 for t < 0. Note

that the pulsar spin-down time scale τ in this formula

and the variable introduced in (10) are unrelated. We

review the derivation of this formula in Appendix A.

At late times (t ≫ τ), the spin-down luminosity scales

as t−2. Consequently, most of the energy is emitted dur-

ing t ∼ τ . The pulsar spin-down time scale τ " 10 kyr is

much smaller than the typical electron propagation time

t ! 100 kyr. Consequently, we can take the limit τ → 0,

which results in
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For pulsars with a significant PWN, the time dependence

in Eq. (13) does not describe the escape of electron and

positrons from the PWN into the ISM. However, for most

pulsars the lifetime of the PWN (t " 20 kyr; [24]) is

much smaller than the typical propagation time t ! 100

kyr [Eq. (5)]. Thus, the detailed time dependence of the

escape is not significant and the delta-function approxi-

mation in Eq. (14) is still valid.

We assume that the energy spectrum of particles in-

jected into the ISM Q(E) by a given pulsar has the form

Q(E) = Q0 E−n e−
E
M , (15)
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The characteristic distance an electron travels before

cooling to energy E is the diffusion distance x2
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4D(E)t, where t = 1
b0E ,

xdiff " 5 kpc for E ! 10 GeV. (6)
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In general, the evolution of the energy density ρ of elec-

trons moving in random paths and losing energy can be

described by the following diffusion-loss equation [29][32]

∂ρ

∂t
=

∂

∂E
(b(E)ρ) +

∂

∂xi
(D(E)

∂

∂xi
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where Q ≡ dN/(dEdtd3x) is the energy density of elec-

trons injected by the source. In principle, one can also

take into account reacceleration, convection, and decays

(collisions), but for electrons with E > 10 GeV these

contributions can be ignored.

The general solution to Eq. (7) is found in [32][33].

To solve Eq. (7) for a general source, one introduces the

Green function G(x, E, t; x0, E0, t0) which satisfies

∂G
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−

∂
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(b(E)G)− D(E)
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=
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Then, the solution to (7) is
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d3x0

∫

dE0

∫

dt0 G(x, E, t; x0, E0, t0)

·Q(x0, E0, t0). (9)

The Green function can be derived as follows. One can

define the variables t′ = t − τ and λ [32][33], where
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b(E′)
, (10)
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The variable t′(t, E) is invariant with respect to the dif-

ferential operator ∂t − b(E)∂E . In fact, D−1(E)(∂t −
b(E)∂E) = ∂λ and Eq. (8) becomes the usual diffusion

equation in λ and x. The Green function is then [32][33]
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1

b(E)
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(4πλ)3/2
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Equation (7) and the above Green function have a few

limitations. Both the ISM magnetic field and density of

IR and starlight photons vary in space. Consequently the

diffusion coefficient and the energy loss function depend

on the coordinates: D = D(E, x), b = b(E, x), and there

is no simple analytic solution to Eq. (7). In Appendix B

we calculate corrections to the predicted e+e− spectrum

at the Earth due to spatial variations in the energy loss

function.

C. Flux from a single pulsar

With the general Green function in hand, one can find

the density of electrons at any point in space for any

source. In this Section, we derive the expected flux of

electrons and positrons produced by a single pulsar.

The distances to pulsars are sufficiently large that we

can assume that pulsars are point sources. We also as-

sume that most of the pulsars’ rotational energy is lost

via magnetic dipole radiation [34] which eventually trans-

forms into the energy of electrons and positrons

Qpulsar(x, E, t) = Q(E)
1

τ

(

1 +
t

τ

)−2

θ(t) δ(x), (13)

where t is the pulsar age and x is its position. θ(t) is the

step function that ensures Qpulsar = 0 for t < 0. Note

that the pulsar spin-down time scale τ in this formula

and the variable introduced in (10) are unrelated. We

review the derivation of this formula in Appendix A.

At late times (t ≫ τ), the spin-down luminosity scales

as t−2. Consequently, most of the energy is emitted dur-

ing t ∼ τ . The pulsar spin-down time scale τ " 10 kyr is

much smaller than the typical electron propagation time

t ! 100 kyr. Consequently, we can take the limit τ → 0,

which results in
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(

1 +
t

τ

)−2

θ(t)
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τ→0

−→ δ(t). (14)

For pulsars with a significant PWN, the time dependence

in Eq. (13) does not describe the escape of electron and

positrons from the PWN into the ISM. However, for most

pulsars the lifetime of the PWN (t " 20 kyr; [24]) is

much smaller than the typical propagation time t ! 100

kyr [Eq. (5)]. Thus, the detailed time dependence of the

escape is not significant and the delta-function approxi-

mation in Eq. (14) is still valid.

We assume that the energy spectrum of particles in-

jected into the ISM Q(E) by a given pulsar has the form

Q(E) = Q0 E−n e−
E
M , (15) 11

⟨σv⟩0 = 3.0 × 10−26cm3s−1 at freeze out. One can as-

sume that the current cross section is larger by a boost

factor (BF). To fit the ATIC and PAMELA data, we set

MDM = 1 TeV, which requires a BF ∼ 500 to reproduce

the observed normalization (Fig. 7).

For a decaying DM model, Eq. (37) would be replaced

by

F (E) =
c

4π

1

b(E)

nχ

τd

∫ M

E

dN

dE′
dE′, (39)

where τd is the life-time of the DM particle and
∫

dN
dE dE

is the number of electrons and positrons produced per

decay. If we take the same number density and the mass

of DM particles as above, then

I

τd
∼ 5 × 10−27 s−1. (40)

These estimates agree with the analysis of [42] [43] [44].

V. CONCLUSIONS

In this work, we analyzed the flux of electrons and

positrons from a single pulsar, from a continuous distri-

bution of pulsars, from pulsars in the ATNF catalog and

from dark matter. Depending on the model parameters

and pulsar properties, they all can adequately fit either

the Fermi and PAMELA data or the ATIC and PAMELA

data. One of the most important question is whether it

is possible to distinguish among these possibilities.

In Fig. 8 we compare the expected e+e− flux from a

single pulsar (Sec. II), pulsars in the ATNF catalog (Sec.

III), a continuous distribution of pulsars (Sec. III), and

DM (Sec. IV). We have chosen the parameters of the

models such that the fluxes have the same value at 100

GeV, similar indices at low energies, and a cutoff at 2

TeV. At energies below ∼ 300 GeV, the fluxes are very

similar. We also do not expect to see any differences be-

tween these models in the positron ratio below 300 GeV,

the upper limit for charge identification in PAMELA.

Above 300 GeV, there are substantial differences

among the e+e− spectrum predicted for these models.

However, it should be noted that the sharpness of the

cutoff for a single pulsar and for DM is strongly model

dependent. If the injection cutoff for a pulsar is ∼ 1

TeV, then the cutoff in the observed flux from a single

pulsar can be much smoother than if the injection cut-

off was higher than the cooling break, in which case its

spectrum is indistinguishable from that predicted for a

ATNF pulsars
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FIG. 8: The fluxes from annihilating dark matter, from a sin-

gle pulsar, and from a continuous distribution of pulsars can

be made similar, depending on the parameters of the models.

The flux from a collection of pulsars may have significant devi-

ations from a continuous curve. This property can be used to

distinguish the pulsars from the sources producing a feature-

less spectrum. The flux from pulsars in the ATNF catalog is

the same as in Fig. 4. The single pulsar has the age t = 100

kyr, distance 0.3 kpc, ηW0 = 9.2 × 1048 erg, and n = 1.6.

The continuous pulsar distribution has Nb = 1.8 kyr−1,

ηW0 = 6.5 × 1048 erg, n = 1.5, and Mstat = 2 Tev. The dark

matter model is the same as in Sec. IV but with MDM = 2

TeV and BF = 2000. The ISM properties are the same as in

Sec. II A.

continuous distribution of pulsars. For the DM flux we

show a model with only one intermediate particle in the

annihilation-decay process. If there are more steps in the

annihilation-decay process, then the flux has a broader

cutoff and, again, may be impossible to distinguish be-

tween either a single pulsar or continuous pulsar distri-

bution origin. Thus, given the significant uncertainties

in the pulsar and DM models, it is unlikely that better

observations alone can distinguish between a single pul-

sar and dark matter origin of anomalous e+e− flux [26]

(a similar conclusion was obtained in [18][45]).

The flux from a discrete collection of pulsars does have

a few distinctive features at high energies. The height of

these features is model dependent and may be within the

error bars of current observations. The presence of these

features requires the existence of a few young, nearby, en-

ergetic pulsars with an injection cutoff ≫ 1 TeV. Conse-

quently the absence of such features in the observed e+e−

spectrum could mean that all young pulsars whose elec-

trons have reached the Earth have had cutoffs ! 1 TeV –

a strong constraint on the properties of PWNe since, as

Single Pulsar Evolution with Time
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FIG. 5: Statistical cutoff as a function of the diffusion in-

dex and the birth rate of pulsars in the Galaxy. The cutoff

in e+e− flux from pulsars is determined by the age of the

youngest pulsar within the diffusion distance from the Earth.

The average such cutoff is a universal quantity that depends

on the properties of ISM (the energy losses and the diffusion

coefficient) and on the pulsar birth rate, but it is insensitive to

the properties of the injection spectrum from the pulsars. We

assume D0 = 100 pc2kyr−1 and b0 = 5 × 10−6GeV−1kyr−1.

observation point has an age T and diffusion distance

R. For a given pulsar birth rate Nb, we estimate Mstat

by demanding that there is at least one pulsar within R

younger than T . Therefore, we have a system of three

equations for the three unknowns R, T and Mstat:

Mstat =
1

b0T
, (30)

R2 = 4D(Mstat)T, (31)

NbT
πR2

Agal
= 1. (32)

Solving this system of equations, we find

Mstat =

(

4π D0 Nb

b2
0 Agal

)
1

2−δ

. (33)

Assuming Rgal = 20 kpc, D0 = 10−4kpc2 kyr−1, and

b0 = 5 × 10−6GeV−1kyr−1, we get

Mstat =
(

4 × 105Nb

)
1

2−δ GeV, (34)

where Nb is in units of kyr−1. In Fig. 5, we show the

statistical cutoff as a function of Nb and the diffusion

index δ. This calculation should be viewed as a rough

estimate, with the actual flux from the distribution of real

pulsars having a cutoff that differs by as much as an order

of magnitude. Additionally, it is possible that current
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FIG. 6: The flux from a continuous distribution of pulsars.

The parameters are chosen to fit the Fermi and PAMELA

data points, ηW0=6.5 × 1048 erg and n = 1.5. In this plot,

instead of the injection cutoff M = 10 TeV, we use the statis-

tical cutoff Mstat = 1 TeV. The backgrounds are the same as

in Fig. 2. The propagation parameters are described in Sec.

IIA.

data are missing a feature at high energies (E ! 2 TeV)

due to poor statistics. A comparison between the flux

from a continuous distribution of pulsars with Mstat = 1

TeV and the current data is shown in Fig. 6.

We note that Eq. (33) can also be used to find the

cutoff in the primary background if we assume that it is

generated by the supernova explosions. For instance, for

the supernova rate in the Milky Way NSN = 10kyr−1 and

δ = 0.4, it gives the cutoff in the primary background

around 3 TeV. Using the same reasoning as above one

may expect some features in the spectrum of the primary

electrons at several TeV. Below ∼ 1 TeV we do not expect

significant fluctuations in the primary background and

the presence of the features should be interpreted as the

signature of pulsars.
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FIG. 8: The same as in Fig. 7, but for a broken power-law spectrum of electrons injected from cosmic ray sources (dNe�/dEe� �
E�2.65

e below 100 GeV and dNe�/dEe� � E�2.3
e above 100 GeV), and for slightly di�erent pulsar spectral indices (� =1.6 and

1.5 in the upper and lower frames, respectively). With this cosmic ray background, the pulsar models shown can simultaneously
accommodate the measurements of the cosmic ray positron fraction and the overall leptonic spectrum.

nihilates into light intermediate states which then decay
into combinations of muons and charged pions, however,
can accommodate the new data (see Fig. 6). In those
dark matter models still capable of generating the ob-
served positron excess, the dark matter’s mass and anni-
hilation cross section fall in the range of ⇤1.5-3 TeV and
⌅�v⇧ ⇤ (6� 23)⇥ 10�24 cm3/s.

We have also considered pulsars as a possible source
of the observed positrons. In particular, we find that for
reasonable choices of spectral parameters and spatial dis-
tributions, the sum of all pulsars in the Milky Way could
account for the observed positrons (see Fig. 8) if, on av-
erage, 10-20% of their total energy goes into the produc-
tion and acceleration of electron-positron pairs (assuming
a birth rate of one per century throughout the Galaxy,
each with an average total energy of 1049). It may also be
the case that a small number of nearby and young pulsars
(most notably Geminga and B0656+14) could dominate
the local cosmic ray positron flux at energies above sev-
eral tens of GeV. Taking into account these two excep-
tional sources, we estimate that if 3-4% of the total en-
ergy from pulsars goes into energetic pairs, these objects
could be responsible for the observed positron fraction.

Currently, we cannot yet discriminate between dark
matter and pulsars as the source of the observed positron
excess. We are hopeful, however, that future data from
AMS may change this situation. In addition to contin-
uing to improve the precision of their measurement of
the positron fraction and extending this measurement to
higher energies, AMS will also measure with unprece-
dented precision a number of secondary-to-primary ratios
of cosmic ray nuclei species, which can be used to con-
strain many aspects of the underlying cosmic rays propa-
gation model. Of particular importance is the 10Be/9Be
ratio, for which existing measurements are limited to en-
ergies below 2 GeV (kinetic energy per nucleon), and with
large errors (for a compilation of such measurements, see
Tables I and II of Ref. [61]). In contrast, AMS is ex-
pected to measure this ratio with much greater precision,
and up to energies of ⇤10 GeV. This information will
enable us to break the longstanding degeneracy between
the di�usion coe⌅cient and the boundary conditions of
the di�usion zone [63]. If these measurements ultimately
favor propagation models with a somewhat narrow dif-
fusion zone (L <⇤ 4 kpc), it would be very di⌅cult to
explain the observed positron fraction with any of the
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FIG. 2: The positron fraction (upper) and electron spectra (lower) for the background together with a pulsar-like component
of the exotic e±. The panels from left to right are for fits I-a and II-a respectively. References of the data: positron fraction
— AMS [56], HEAT94+95 [57], HEAT00 [58], PAMELA [2], AMS-02[1] ; electron — PAMELA [16], ATIC [22], HESS [23, 24],
Fermi-LAT [21].

TABLE III: Fitting results of pulsar-like model with proton spectrum fixed

I-a II-a

best mean best mean

log(Ae
a) −8.981 −8.977 ± 0.004 −8.936 −8.933 ± 0.010

γ1 1.506 1.511 ± 0.010 1.598 1.629 ± 0.071

γ2 2.644 2.648 ± 0.010 2.749 2.763 ± 0.028

log(pebr/MeV) 3.625 3.608 ± 0.018 3.604 3.613 ± 0.037

log(Apsr
b) −25.115 −25.202 ± 0.158 −24.946 −25.021 ± 0.427

α 1.867 1.849 ± 0.031 1.916 1.904 ± 0.088

log(pc/MeV) 6.617 6.553 ± 0.100 6.235 6.287 ± 0.389

ce+ 1.154 1.191 ± 0.057 1.622 1.691 ± 0.176

φ/MV 474 499± 25 695 723± 71

aNormalization at 25 GeV in unit of cm−2s−1sr−1MeV−1.
bNormalization at 1 MeV in unit of cm−3s−1MeV−1.

and annihilation cross section. But we should keep in
mind that such results should not be considered statisti-
cally meaningful as the fits are quite bad. The solid lines
shown in Fig. 5 are the exclusion limits derived by the
Fermi γ-ray observations of the Galactic center [59] and
dwarf galaxies [60]. We can see that γ-rays tend to give
strong constraints on the DM scenario, especially for the
τ+τ− final state.

We further note that for the DM scenario, the param-
eter φ is very large. The solar modulation potential is
assumed to vary between 300 and 1000 MV in these fits.
From Tables III - V we see that almost in all cases the
modulation potential tends to the upper end. This might
be inconsistent with the fact that PAMELA and AMS-02
work approaching the solar minimum.

Since there might be discrepancy between the AMS-
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Fig. 1.— Left: The positron fraction from a combination of the Galprop model for the di�use e± Galactic background (green dotted),
along with contributions from the Geminga (black) and Monogem (red) pulsars, compared with data from PAMELA (green circles), Fermi-
LAT (orange triangles) and AMS-02 (blue squares). Right: The total flux of cosmic-ray electrons and positrons from a combination of
the same Galprop model (green dotted), with contributions from the Geminga (black dashed) and Monogem (red dashed) pulsars. These
create a total cosmic-ray lepton spectrum (black and red solid respectively), which can be compared with data from the Fermi-LAT (orange
squares) and H.E.S.S. (pink diamond) observations, (right). Note that the di�use background from Galprop was not tuned to reproduced
the H.E.S.S. data, and we do not attempt to fit those data above 1 TeV.

the total lepton flux from each pulsar for any scenario
which is compatible with the AMS-02 data, since these
values must decrease if additional sources are considered.
The total energy outputs we find depend quite sensi-
tively on the assumptions made for the spectral slope,
but are generically compatible with the total energy out-
put expected from a mature pulsar, which ranges within
5 ⇥ 1048 � W0/erg � 5 ⇥ 1050, (Delahaye et al. 2010;
Malyshev et al. 2009).
Employing a combination of the Galprop Galactic e±

di⇥use background model, rescaled by a factor 0.8 to
account for the additional sources, and the calculated
flux from each candidate pulsar, in Figure 1 we show the
positron fraction (left) and the combined flux of electrons
and positrons (right) observed at the solar position for
models in which the Geminga pulsar dominates the pro-
duction of nearby positrons (black), and a model where
the Monogem pulsar dominates cosmic-ray positron pro-
duction (red). In each case, we find an extremely good
match between our results and AMS-02 observations.

3. DETECTION OF A COSMIC-RAY
ELECTRON/POSITRON ANISOTROPY WITH ACTS

In the context of di⇥usive propagation, we estimate the
expected anisotropy from a source at a distance d that
injected e± at a time T (e.g. Grasso et al. 2009) with

� =
3

2c

d

T

(1� ⇥)E/Eloss

1� (1� E/Eloss)
1�⇥

Npsr(E)

Ntot(E)
, (6)

with Npsr and Ntot the pulsar and total e± spectra. The
dipolar anisotropy � is defined as

� =
Nf �Nb

Nf +Nb
(7)

where Nf and Nb are the total number of e± ob-
served during a selected ensemble of observations point-
ing within the sky hemisphere centered on the pulsar
(Nf ) and during a second ensemble of observations with
the same collective e�ective exposure as the first ensem-
ble, pointing within the opposite hemisphere (Nb).
We now turn to the question of how to search for an

anisotropy in the cosmic-ray e± flux with ACTs. The

most significant uncertainty in the determination of the
cosmic-ray e± spectrum with ACTs is the e⇧ciency of
cosmic-ray proton rejection. This is the dominant sys-
tematic error because the flux of cosmic-ray hadrons
dominates the lepton flux by several orders of magni-
tude. While observations of �-ray point sources are able
to employ the isotropy of the cosmic-ray signal in order
to control this background, measurements of the cosmic-
ray e± flux must instead determine the hadronic or elec-
tromagnetic nature of each individual observed shower.
To this end, the H.E.S.S. collaboration has adopted a
random forest approach (Breiman & Cutler 2004; Bock
et al. 2004) intended to convert information about the
observed shower into a parameter ⇤ which describes the
extent to which the shower is electron-like. The param-
eter ⇤ is determined in the range of 0 – 1, with larger
numbers indicating a better fit to Monte Carlo models
of electron showers. While the ⇤ parameter is highly
energy-dependent, in many situations its discriminating
power is significant enough to produce an electron popu-
lation which dominates the hadronic background at high
⇤ values. We note that even for moderate values of ⇤, the
contribution from heavier nuclei is entirely negligible.
While a proper selection of ⇤ is important so that the

cosmic-ray e± population produces a reasonable portion
of the total cosmic-ray signal, searches for anisotropy
are significantly less a⇥ected by errors in hadron rejec-
tion compared to measurements of the total e± spectrum
(Aharonian et al. 2008, 2009). Assuming that both the
misidentified cosmic-ray proton and background cosmic-
ray e± fluxes are isotropic, the fraction of the background
which stems from each is irrelevant in searches for e±

anisotropies. Instead, the measurable quantity is the
fraction of the total cosmic-ray flux (with ⇤ > 0.9) which
stems from an anisotropic candidate pulsar. We can cal-
culate the total contribution to the detected cosmic-ray
flux with an ACT as:

Ntot = (Npsr +N�) + (Ne,iso +Np), (8)

where Npsr is the number of cosmic-ray leptons produced
by the pulsar, N� is the number of �-rays observed as
electromagnetic showers in the instrument, Ne,iso is the

Individual pulsar sources could also cause 
anisotropy in the observed positron spectra.	

Assuming we have a candidate pulsar source 
we can point a detector towards and away 
from the source.
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number of e± from sources which are highly isotropized
before di⇤using to the solar position, and Np is the num-
ber of protons misidentified as electromagnetic showers.
We note that sources in the first parenthesis are mea-
surably anisotropic, while the second set of sources are
assumed to be perfectly isotropic in what follows. In
our formal calculation, we will ignore the parameter N⇥ ,
noting that the �-ray flux is highly subdominant to the
e± and proton fluxes. However, it is important to note
that some �-ray components, such as the Galactic di⇤use
emission, are a potentially important source of system-
atic errors, because their anisotropy is of order unity.
We discuss this systematic e⇤ect and the impact of our
assumption at length in Section 5.
If N⇥ ⌅ 0, the dipole anisotropy can be written in

terms of the pulsar contribution to the total cosmic-ray
flux as:

⇥ =
Nf �Nb

Nf +Nb
=

Npsr,f �Npsr,b

Npsr,f +Npsr,b + 2(Ne,iso +Np)
, (9)

where, consistently with the notation introduced above
in Eq. (7), Npsr,f and Npsr,b are the total number of
e± from the candidate pulsar from the two ensembles of
observations when the telescope is pointing at locations
in the hemisphere oriented directly towards, or directly
away from the pulsar (note that the factor 2 in the de-
nominator stems from our assumption of identical e⇤ec-
tive exposures for the two ensembles of observations).
An anisotropy measurement is then significant at the 2⇤
level when:

⇥ > 2

�
Navg

Navg
, (10)

where Navg = (Nf + Nb)/2 is the average number of
showers observed during each ensemble of observations.
Using this model, we can now estimate the anisotropy
level, as a function of energy, which can be detected with
an ACT, and compare it with the current observational
constraints from Fermi-LAT and AMS-02.
The key input to our estimate of the sensitivity to an

e± anisotropy is the determination of Navg which, in
turn, depends on the e± flux measured by the ACTs.
We start with predictions on the limits which can be set
using archival data from the H.E.S.S. telescope. We note
that other ACTs, such as VERITAS (Holder et al. 2008),
can in principle make very similar measurements. How-
ever, details of VERITAS measurements of the electron
spectrum are not publicly available, and we therefore em-
ploy H.E.S.S. for our case study.
H.E.S.S. has presented two di⇤erent results on the

cosmic-ray e± spectrum. The first result concerns the
high-energy spectrum, in the range of 1–4 TeV (Aharo-
nian et al. 2008). In this regime, H.E.S.S. reports an
e⇤ective area of approximately 5⇥104 m2. The study
employed 239h of live-time, producing an e⇤ective expo-
sure of 8.5⇥107 m2 sr s. In this study, H.E.S.S. found a
best-fitting e± spectrum

dN/dE = k(E/1 TeV)��, (11)

with k = 1.17±0.02 ⇥ 10�4 TeV�1m�2sr�1s�1, and �=
3.9±0.1 (stat). Given the H.E.S.S. e⇤ective exposure,
this implies the detection of 3370 e±. Indeed, using the

Dexter package3, we find that H.E.S.S. observed 3100 e±

with ⇥ > 0.6. Of these events, 2600 were found to have
⇥ > 0.9, giving this cut a relative acceptance of 0.77.
Interestingly, while H.E.S.S. reports the detection of 7610
protons with ⇥ > 0.6, only 2470 of these protons have
⇥ > 0.9, yielding a sample which is, therefore, electron
dominated.
Additionally, H.E.S.S. investigated the low energy e±

spectrum in Aharonian et al. (2009), in order to investi-
gate the spectral bump observed by ATIC (Chang et al.
2008). In this study, H.E.S.S. employed only 77 hours
of livetime, with a calculated e⇤ective area of 3⇥104 m2,
for a total e⇤ective exposure of 2.2⇥107 m2sr s. H.E.S.S.
obtained a best-fitting broken power law spectrum:

dN/dE = k(E/Eb)
��1(1 + (E/Eb)

1/�)�(�2��1)�, (12)

with a best fit values Eb=0.9 ± 0.1 TeV,
k = (1.5 ± 0.1) ⇥ 10�4 TeV�1m�2sr�1s�1, �1=3.0±0.1
and �2=4.1±0.3. This indicates that H.E.S.S. observed
approximately 7660 e± with energies between 340–700
GeV, the range in which they provide the observed
distribution over ⇥. Unfortunately, in this low energy
regime, the ⇥ parameter is less e⌃cient at di⇤erentiating
the cosmic-ray electron and proton spectrum, and
H.E.S.S. observes only 2900 e± with ⇥ > 0.9 compared
to 5020 protons.

4. RESULTS

A remarkable aspect of ACT searches for e± anisotropy
is that no dedicated observations are required in addition
to archival data. As long as the target pulsars fall in re-
gions of the sky such that, on average, the ACT spends
a significant fraction of observing time in hemispheres
containing and not containing the pulsars, a sizable frac-
tion of the total archival observation time can be used
to search for e± anisotropies. The two pulsars we con-
sider here (Monogem is at (l,b) = (201.1, +8.3), and
Geminga is at (l,b) = (195.1, +4.3)) fall, for example,
in a favorable part of the sky for H.E.S.S. observations4.
In practice, the available observation time is the small-
est of the collective time the telescope spent observing in
hemispheres containing and non-containing the relevant
candidate pulsar.
In order to predict the H.E.S.S. constraints which could

be set using current data, we need to make a multitude
of assumptions. We caution the Reader that several rele-
vant figures have been approximated quite roughly, as an
accurate calculation is impossible without further infor-
mation about the H.E.S.S. telescope as well as its point-
ing history. We first approximate the total available
livetime of the instrument to be approximately 3000h
for searches o⇤ of the Galactic plane (where the �-ray
background is much more significant), noting that the
recently published H.E.S.S. line search included 1153h of
livetime taken during studies of extragalactic objects be-
tween 2004-2007 (Abramowski et al. 2013), and that ad-
ditional surveys (such as those of dwarf spheroidal galax-
ies) will also provide excellent targets for e± anisotropy
searches. In order to calculate the e⇤ective area of the
H.E.S.S. instrument, we take the model of Benbow (2005,

3 http://dexter.sourceforge.net/
4 We note that both pulsars are located relatively close to the

Crab nebula, which is closely monitored by all ACTs.
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Fig. 2.— The limits on the cosmic-ray e± anisotropy one year of
Fermi-LAT data (orange triangles) and those recently reported by
AMS (cyan), as well as the predicted limits from 5 and 10 years of
Fermi-LAT observations (orange solid and orange dashed), along
with the predicted limits from 3000 and 5000 hr of H.E.S.S. ob-
servations (maroon solid and maroon dashed), as well as predicted
limits from 1000 and 3000 hours of CTA observations (blue solid
and blue dashed). These limits are compared with the predicted
fluxes for models of the Geminga (black solid) and Monogem (red
solid) pulsars which correctly explain the positron excess observed
by AMS-02. We note that limits from the Fermi-LAT are techni-
cally set based on a minimum energy E, rather than a traditional
E dN/dE, a di�erence which is less important given the steeply
falling e± flux.

Fig 2a.), assuming an average zenith angle of 45⇤, and we
take the H.E.S.S. field of view to cover 3.8�10�3 sr. We
additionally consider a future global observation time of
5000h, including new data taken by the H.E.S.S.-II tele-
scope.
We note that this combination provides an e⇥ective ex-

posure at 340 GeV which exceeds that reported by Aha-
ronian et al. (2009) by approximately a factor of 8, pre-
sumably due to additional cuts regarding the nature of
the electron shower and the removal of �-ray point source
contamination. We note that this mismatch is slightly
worse when comparing the 1 TeV calculation with that
of (Aharonian et al. 2008), as additional cuts are made
in this study. In what follows we degrade our calculated
e⇥ective exposure by an ad hoc factor of 5. We note that
this may be overly conservative, as cuts optimized for
this study could allow for a much larger e⇥ective area,
since this analysis is by its nature less susceptible to sys-
tematic errors regarding proton contamination.
In order to calculate the e⇥ect of the ⇥ parameter on

the separation of electrons and protons, we make a cut
of ⇥ > 0.9, and use the values given by (Aharonian et al.
2008) and Aharonian et al. (2009) to calculate the loss of
e⇥ective area after this cut is applied at energies of 1 TeV
and 340 GeV respectively, which correspond to the low
end of the energy range employed in each analysis. Thus,
we assume a relative electron acceptance of 0.38 at en-
ergies below 340 GeV and 0.77 at energies above 1 TeV,
linearly interpolating between these values at intermedi-
ate energies. Finally, using the observed proton back-
ground at ⇥ > 0.9 for each observation, we assume an
irreducible proton background which is 1.73 (0.95) times

larger than the total e± flux at energies of 340 GeV (1
TeV), and again linearly interpolate between these val-
ues.
In order to compare our results with the projected lim-

its from five years and ten years of Fermi-LAT data, we
take the limits from one year of data obtained by Ack-
ermann et al. (2010b) and calculate a best fit power law
to the 95% upper limits of � < 0.30 (E / 1 TeV)1.39

and then reduce the limits by the square-root of the
additional exposure time, in order to extrapolate opti-
mistic results where the exclusion limits are dominated
by statistics only. We note that this result may slightly
improve, in light of new data-taking algorithms such as
Pass-8, which are likely to increase the e⇥ective area to
electron showers (Atwood et al. 2013). We addition-
ally compare our result with the 95% confidence limit
of � < 0.036 measured by AMS-02, though we note that
no energy scaling was provided with this value.
In addition to these H.E.S.S. and Fermi-LAT ob-

servations, we predict observations from the upcoming
Cherenkov Telescope Array (CTA). While the parame-
ters of CTA are unknown, for the purposes of repeata-
bility we assume the following educated guesses for the
relevant parameters. We take the e⇥ective area to be
an order of magnitude greater than the H.E.S.S. tele-
scope, and the field of view to be a factor of (3/2)2 larger,
corresponding to the models suggested in CTA Consor-
tium (2011). Additionally, we note that the multiple
telescopes of CTA greatly enhance its hadronic rejection
capabilities, thus we add an ad hoc factor of two decrease
in the relative hadronic flux for CTA observations. All
other parameters (including the ⇥ cut and the factor of
5 degradation in the e⇥ective exposure seen in H.E.S.S.
observations) are left the same.
In Figure 2 we show the current limits given by 1 year

of Fermi-LAT data, the recently released AMS-02 lim-
its on the e± anisotropy, as well as the projected lim-
its from 3000h and 5000h of H.E.S.S. observations and
from 1000h and 3000h of CTA observations, compared
to the projected anisotropies of the Geminga and Mono-
gem pulsars with the same setup as described in Section
2 and shown in Fig. 1. Note that the observation times
are meant here as total duration of the two ensembles
of observations in the hemispheres towards and opposite
the direction of the pulsar of interest. For example, for
3000 hr, in the notation introduced in the previous sec-
tion, the global duration of the ensemble of observations
yielding Nf,b is 1500 hr each. For all models we assume a
total e± flux given by the best fitting power-law given by
Aharonian et al. (2009). We find that current H.E.S.S.
archival observations have the potential of observing the
anisotropy induced by Monogem, while CTA observa-
tions will be necessary in order to observe any anisotropy
from Geminga. The predicted level of anisotropy from ei-
ther pulsar under consideration here is fully compatible
with the limits from Fermi-LKAT and from AMS-02.

5. THE DIFFUSE GAMMA-RAY BACKGROUND

A serious concern in the identification of the e±

anisotropy stems from the misidentification of the �-ray
background. Unlike hadronic showers, �-ray and electron
showers are nearly identical in nature, with the only ob-
servable di⇥erence pertaining to a slightly di⇥erent value
of the reconstructed shower maximum (Xmax). How-
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FIG. 3: 1σ (solid contour) and 2σ (dashed contour) confidence regions in the pulsar parameter space to fit the positron fraction
and electron spectrum for α = 2 and Ecut = 1TeV. The regions are projected onto the Etot vs. d (upper left), Etot vs. T
(upper right), and T vs. d (lower) planes. The circles and bars denote the 177 pulsars in the ATNF catalogue within d < 3 kpc
and 5×104 < T (yr) < 107. Etot for each pulsar is estimated in the range of 5% ≤ η

e
± ≤ 50%. 7 nearby pulsars with d < 0.5 kpc

and T < 106 yr are marked by colors.

with d < 0.5 kpc and T < 106 yr are more likely to fit the
data. We have marked them by colors, with the color
green/magenta corresponding to Geminga/Monogem.
Fig. 3 shows that the favored region in the pulsar space

is rather small. There are several pulsars located near the
favored region, especially 7 nearby pulsars marked by col-
ors. These pulsars could also have sizable contributions
to the high energy e± flux. Therefore, a more reasonable
treatment may include the contributions of all suitable
pulsars.

V. MULTIPLE PULSARS

It is possible that the flux of high energy elec-
tron/positrons are contributed by many pulsars. There-
fore we sum the contribution from all the 177 mature
pulsars in the ATNF catalogue to get the positron flux
following the method in Ref. [11]. For each pulsar, we
randomly assign the parameters in the following ranges:
700 ≤ Ecut(GeV) ≤ 3000, 1.5 ≤ α ≤ 2.3 and 5% ≤
ηe± ≤ 30%. The results are shown in Fig. 4. Obviously,
by summing the contributions of all pulsar, even low e±

pair conversion efficiency ηe± could be enough to fit the
data.
Since the pulsar parameters vary in large ranges, the

resulting total spectrum of all pulsars also varies in a
wide band. The energy cutoff of each pulsar depends on
the minimum of the injection cutoff Ecut and the cooling
cutoff Emax, and is different from each other. It is further
shown that few nearby pulsars could dominate the total
flux. Therefore, for each combination of the parameters,
the sum spectrum tends to have several bumps at high
energies, as shown in Fig. 4.
Since some pulsars radio beams do not point toward

the earth, the ATNF catalogue is incomplete. There
might be a diffuse population of pulsars which are be-
yond the observed catalogue. This diffuse component
may contribute as another “background” of the elec-
trons/positrons. Similar as done in [19], we introduce a
continuously distributed source component of the diffuse
pulsars, with spatial distribution [51]

Q(R, z) ∝
(

R

R⊙

)2.35

exp

[

−
5.56(R−R⊙)

R⊙

]

exp

(

−
|z|
zs

)

,

(10)
where R⊙ = 8.5 kpc and zs ≈ 0.2 kpc. The energy spec-

Yuan et al arXiv:1304.1482
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FIG. 3: The expected spectrum from the continuous flux dis-

tribution and that from pulsars in the ATNF catalog pulsar

[28]. The latter is calculated using η = 0.065, n = 1.5, and

a pulsar time scale τ = 1 kyr for each pulsar. This last fact,

in conjunction with its spin-down age and current spin-down

luminosity, is used to calculate each pulsar’s initial rotational

energy through Eq. (29). We also use the value of the propa-

gation parameters given in Sec. IIA. Several hundred pulsars

contribute below 300 GeV and the continuous distribution

provides a good approximation for these energies. Above 300

GeV, there are only ∼ 10 contributing pulsars, and the ob-

served flux in this energy range is strongly dependent on their

individual properties. The reason for the significant discrep-

ancy between these two curves above 2 TeV has to do with

the actual local distribution of pulsars versus the averaged

flux seen by many observers in the Galaxy, as discussed in

Sec. IIIB.

with the normalization constant

J0 =
ηW0

Γ(2 − n)M2−n

Nb

Agal
, (24)

where Agal is the area of the galactic plane. Since the dif-

fusion distance of these electrons is significantly smaller

than the distance from the Earth to the edge of the galac-

tic plane [35] (xdiff < 10 kpc), we can neglect the effects

of having an edge at a finite distance.

Using the general Green function in Eq. (12), the flux

of electrons from this distribution is

F =
c

4π

∫

d3x0

∫

dE0

∫

dt0 G(x, E, t; x0, E0, t0)

·Q(x0, E0, t0). (25)

Integrating over t0 and x, we obtain

F (E) =
c

4πb(E)

∫ ∞

E
dE0

1
√

4πλ(E, E0)
J0E

−n
0 e−

E0
M ,

(26)
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FIG. 4: The predicted flux from pulsars in the ATNF cat-

alog calculated using the same procedure as in Fig. 3 but

accounting for spatial variations of energy losses as described

in Appendix B. The assumed backgrounds are the same as in

Fig. 2.

where λ is defined in Eq. (11). This flux can be rewritten

as

Fdistr(E) =
c

4π

J0√
4πb0D0

I E
M

E−n−(δ+1)/2, (27)

where

I E
M

=

∫ ∞

1
dx

√

1 − δ

1 − xδ−1
x−n e−

E
M x, (28)

for example, if E ≪ M , δ = 0.4, and n = 1.5, then

I E
M

≈ 3.

As in the case of a single pulsar flux, the number of

parameters we need to fit the data is much smaller than

the number of parameters characterizing the flux from

a collection of pulsars. In this case, the index of the

observed flux and the normalization can be found from

Eq. (27). For example, the index of the flux at low en-

ergies na = n + (1 + δ)/2. Formally, the cutoff in this

case is equal to the injection cutoff M , but for an actual

distribution of pulsars the expected cutoff is lower and

Malyshev, Cholis, Gelfand, PRD 2009 

2009 Fermi Symposium, Washington, D.C., Nov. 2-5 5

FIG. 3: The e− + e+ spectrum from pulsars (gray bottom lines) plus the Galactic conventional component (dotted line)
is compared with experimental data. Each gray top line represents the sum of all pulsars for a particular combination
of pulsar parameters. The dashed (pulsars only) and solid (pulsars + GCRE component) blue lines correspond to a
representative choice among that set of possible realizations. The dot-dashed (purple) line represents the contribution
of Monogem pulsar in that particular case. Note that merely for graphical reasons, here Fermi-LAT statistical and
systematic errors are added in quadrature. In the insert the positron fraction for the same models is compared with
experimental data. Solar modulation is accounted as done in Fig.2.
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higher energy CR leptonic spectra
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 Both come from many pulsar realizations… 	

We need to understand the significance of spectral 	

features



2

10−1 100 10110−6

10−5

10−4

Ee (GeV)

E3  d
Φ

 / 
dE

 (G
eV

2  c
m
−2

 s
r−

1  s
−1

) 

 

 

DM + DM → 2e
DM + DM → 2µ
DM + DM → 2τ
TOTAL

100 101 102

10−2

10−1

Ee (GeV)

PAMELA

e
+
/
(e

−

+
e
+
)

100 101 102

10−2

10−1

AMS (projection)

Ee (GeV)

e
+
/
(e

−

+
e
+
)

8 10 12
10−1.31

10−1.24

FIG. 1. Left: The contribution to the local cosmic ray positron spectrum from 10 GeV dark matter particles annihilating
democratically to charged lepton pairs, neglecting the e�ects of solar modulation. Center: The cosmic ray positron fraction
predicted in this model compared to the measurements of PAMELA, including astrophysical backgrounds from secondary
production and a nearby pulsar, and including the e�ects of solar modulation. The dashed blue line denotes the contribution
from dark matter annihilations. Right: The projected ability of AMS to measure the cosmic ray positron fraction in this
scenario. The distinctive feature at an energy equal to the dark matter mass can clearly be identified by AMS. In each frame,
we have adopted a generalized NFW profile with an inner slope of ⇢DM ⇥ r�1.2 and an annihilation cross section chosen to
match the gamma-ray and radio signals observed from the inner Galaxy (�v = 4.5� 10�27 cm3/s). See text for more details.

produce a gamma-ray spectrum consistent with that ob-
served from the Galactic Center [11], while the electrons
and positrons generate the synchrotron emission from the
observed radio filaments [14]. For possible realizations of
such phenomenological features within a particle physics
model, see Ref. [17]. To accommodate the observed mor-
phology of gamma-ray and synchrotron emission from the
Inner Galaxy, we adopt a dark matter distribution which
follows a generalized NFW profile with an inner slope of
⌅DM ⇧ r�1.2 and a scale radius of 20 kpc. To normalize
these signals, we adopt an annihilation cross section of
⇧v = 4.5⇤ 10�27 cm3/s and a local dark matter density
of 0.4 GeV/cm3.

Once injected into the halo, electrons and positrons dif-
fuse through the Galactic Magnetic Field, steadily losing
energy through a combination of inverse Compton scat-
tering and synchrotron losses. To determine the cosmic
ray spectrum as observed at the Solar System, we solve
the standard propagation equation (using the publicly
available code GALPROP):

↵⌥

↵t
= Q(r, p) +⌃ · (Dxx ⌃ ⌥ �V⌥) +

↵

↵p
p2Dpp

↵

↵p

1

p2
⌥

� ↵

↵p

⌅
ṗ⌥ � p

3
(⌃ ·V)⌥

⇧
� 1

⌃f
� 1

⌃r
⌥ , (1)

where ⌥(r, p, t) is the number density of a given cosmic
ray species per unit momentum, and the source term
Q(r, p) includes the products of the decay and spalla-
tion of nuclei, as well as any primary contributions from
supernova remnants, pulsars, dark matter annihilations,
etc. Dxx is the spatial di⇥usion coe⇧cient, which is
parametrized by Dxx = �D0xx(⌅/4GV )�, where � and ⌅
are the particle’s velocity and rigidity, respectively. Also
included in this equation are the e⇥ects of di⇥usive reac-
celeration, convection, and radioactive decay [18]. The
contribution to the source term, Q(r, p), from dark mat-
ter is simply determined by the flux of annihilation prod-
ucts injected into the halo. In our calculations, we adopt
D0xx = 5.25⇤1028 cm2/s and apply free-escape boundary

conditions at 4 kpc above and below the Galactic Plane.
These choices lead to boron-to-carbon and antiproton-to-
proton ratios that are consistent with observations.
For the electron/positron energy loss rate, we include

contributions from the default GALPROP radiation field
model, and from a magnetic field model described by
B = 7µG exp(�r/10 kpc) exp(�|z|/2 kpc), where r and z
describe the location in galactic (cylindrical) coordinates.
In the left frame of Fig. 1, we show the contribution to

the local cosmic ray positron spectrum from dark matter
annihilations. Note the sudden drop in the cosmic ray
positron flux at 10 GeV (corresponding to the mass of
the dark matter particle). The dark matter contribution
to the flux of positrons at energies just below the edge
can be calculated analytically and is given by [9]:

d�e+

dEe+

����
edge

=
c

8⇤

⇧e+e�v

(dEe/dt)

⇥
⌅DM

mDM

⇤2

, (2)

where ⇧e+e�v is the dark matter annihilation cross sec-
tion to electron-positron pairs, ⌅DM is the local density
of dark matter, and dEe/dt is the local energy loss rate of
electrons/positrons from synchrotron and inverse Comp-
ton scattering. This energy loss rate can be written in
terms of the local densities of radiation and magnetic
fields:

dEe

dt
⌅ 1.02⇤ 10�14 GeV/s

⇥
⌅rad + ⌅B

1 eV/cm3

⇤⇥
Ee

10GeV

⇤2

.

(3)
Combining these two equations, and for a local energy
density in radiation and magnetic fields of 1.4 eV/cm3,
this predicts a positron flux at the dark matter’s mass of
d�e+/dEe+ ⌅ 2⇤10�7 cm�2 sr�1 s�1 GeV�1. As we will
demonstrate, this sudden drop will lead to a distinctive
feature in the positron fraction, likely observable to AMS.
To evaluate the prospects for observing such a con-

tribution to the cosmic ray positron spectrum, we must
consider the relevant astrophysical backgrounds, as well
as the e⇥ects of solar modulation. In our analysis, we will

Hooper, Xue arXiv:1210.1220
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The AMS positron fraction lacks any obvious spectral feature up to 350 
GeV, thus we can place strong limits on light leptophilic DM.

Search for spectral features
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FIG. 1. The e± spectrum from annihilating DM, after
propagation, for different annihilation final states, assum-
ing ⟨σv⟩= 3 × 10−26 cm3s−1. Solid lines refer to refer-
ence diffusion zone (L=4kpc) and energy loss assumptions
(Urad + UB = 1.7 eV cm−3). Dashed (dotted) lines show the
effect of a different scale height L=8 (2) kpc. The dash-dotted
line shows the impact of increasing the local radiation plus
magnetic field density to Urad + UB = 2.6 eV cm−3.
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FIG. 2. The AMS positron fraction measurement [2] and
background+signal fit for DM annihilating directly to e+e−,
for mχ = 10GeV and 100GeV. The normalization of the DM
signal in each case was chosen such that it is barely excluded
at the 95% CL. For better visibility, the contribution from
DM (lower lines) has been rescaled as indicated.

of the spectrum depends only marginally on L, it may be
reduced by up to a factor of ∼2 when increasing the as-
sumed local energy losses via synchrotron radiation and
inverse Compton scattering by 50%. In Fig. 2, we show a
direct comparison of the DM signal with the AMS data,
for the case of e+e− final states contributing at the max-
imum level allowed by our constraints (see below) for two
fiducial values of mχ. Again, it should be obvious that
the shape of the DM contribution differs at all energies
significantly from that of the background.
Statistical treatment. We use the likelihood ratio

test [60] to determine the significance of, and limits on,

a possible DM contribution to the positron fraction mea-
sured by AMS. As likelihood function, we adopt a prod-
uct of normal distributions L =

∏
iN(fi|µi,σi); fi is the

measured value, µi the positron fraction predicted by the
model, and σi its variance. The DM contribution enters
with a single degree of freedom, given by the non-negative
signal normalization. Upper limits at the 95%CL on the
DM annihilation or decay rate are therefore derived by
increasing the signal normalization from its best-fit value
until −2 lnL is changed by 2.71, while profiling over the
parameters of the background model.

We use data in the energy range 1–350GeV; the vari-
ance σi is approximated by adding the statistical and
systematic errors of the measurement in quadrature,
σi = (σ2

i,stat + σ2
i,sys)

1/2. Since the total relative error is
always small (below 17%), and at energies above 4GeV
dominated by statistics, we expect this approximation to
be very reliable. The binning of the published positron
fraction follows the AMS energy resolution, which varies
between 10.4% at 1GeV and 1.5% at 350GeV. Although
we do not account for the finite energy resolution of AMS
in our analysis, we have explicitly checked that this im-
pacts our results by no more than 10%.

As our nominal model for the part of the e± spec-
trum that does not originate from DM, henceforth sim-
ply referred to as the astrophysical background, we use
the same phenomenological parameterization as the AMS
collaboration in their analysis [2]. This parameterization
describes each of the e± fluxes as the sum of a common
source spectrum – modeled as a power-law with expo-
nential cutoff – and an individual power-law contribution
(only the latter being different for the e+ and e− fluxes).
After adjusting normalization and slope of the secondary
positrons such that the overall flux reproduces the Fermi
e++e− measurements [61], the five remaining model pa-
rameters are left unconstrained. This phenomenological
parameterization provides an extremely good fit (with a
χ2/d.o.f. = 28.5/57), indicating that no fine structures
are observed in the AMS data. For the best-fit spectral
slopes of the individual power-laws we find γe− ≃ 3.1
and γe+ ≃ 3.8, respectively, and for the common source
γe± ≃ 2.5 with a cutoff at Ec ≃800GeV, consistent with
Ref. [2]. Subsequently, we will keep Ec fixed to its best-fit
value.

Results and Discussion. Our main results are the
bounds on the DM annihilation cross section, as shown
in Fig. 3. No significant excess above background was
observed. For annihilations proceeding entirely to e+e−

final states, we find that the “thermal” cross section is
firmly excluded for mχ ! 90GeV. For mχ ∼ 10GeV,
which is an interesting range in light of recent results
from direct [62–66] and indirect [67–69] DM searches, our
upper bound on the annihilation cross section to e+e− is
approximately two orders of magnitude below ⟨σv⟩therm.
We also show in Fig. 3 the upper bounds obtained for
other leptonic final states. As expected, these limits are
weaker than those found in the case of direct annihilation
to electrons – both because part of the energy is taken

101 102

mχ [GeV]

−3

−2

−1

0

1

2

3

S
ig
n
al

si
gn

ifi
ca
n
ce

[G
au

ss
ia
n
si
gm

a]

A DM signal
Search for Spectral Features(none at a 

significance more than 1.4 sigma)10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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FIG. 4 (color). (a) Stability of the measurement in the energy
range 83.2–100 GeVover wide variations of the cuts fitted with a
Gaussian of width 1.1%. (b) The positron fraction shows no
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FIG. 5 (color). The positron fraction compared with the most
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AMS parametrization (not strongly motivated on physical 
understanding of cosmic ray production sources):

Less than 1 sigma
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FIG. 3. Upper limits (95% CL) on the DM annihilation cross
section, as derived from the AMS positron fraction, for various
final states (this work), WMAP7 (for ℓ+ℓ−) [43] and Fermi
LAT dwarf spheroidals (for µ+µ− and τ+τ−) [42]. The dot-
ted portions of the curves are potentially affected by solar
modulation. We also indicate ⟨σv⟩therm ≡ 3× 10−26 cm3s−1.
The AMS limits are shown for reasonable reference values of
the local DM density and energy loss rate, and can vary by a
factor of a few, as indicated by the hatched band (for clarity,
this band is only shown around the e+e− constraint).

away by other particles (neutrinos, in particular) and be-
cause they feature broader and less distinctive spectral
shapes. These new limits on DM annihilating to µ+µ−

and τ+τ− final states are still, however, highly competi-
tive with or much stronger than those derived from other
observations, such as from the cosmic microwave back-
ground [43] and from gamma-ray observations of dwarf
galaxies [42]. Note that for the case of e+e−γ final states
even stronger limits can be derived for mχ ! 50GeV by
a spectral analysis of gamma rays [70]. We do not show
results for the b̄b channel, for which we nominally find
even weaker limits due to the broader spectrum. In fact,
due to degeneracies with the background modeling, lim-
its for annihilation channels which produce such a broad
spectrum of positrons can suffer from significant system-
atic uncertainties. For this reason, we consider our limits
on the e+e− channel to be the most robust.
Uncertainties in the e± energy loss rate and local DM

density weaken, to some extent, our ability to robustly
constrain the annihilation cross sections under consid-
eration in Fig. 3. We reflect this uncertainty by show-
ing a band around the e+e− constraint, corresponding
to the range Urad + UB = (1.2 − 2.6) eV cm−3, and
ρ⊙χ = (0.25− 0.7)GeV cm−3 [59, 71]. Uncertainty bands
of the same width apply to each of the other final states
shown in the figure, but are not explicitly shown for clar-
ity. Other diffusion parameter choices impact our lim-
its only by up to ∼10%, except for the case of low DM
masses, for which uncertainties in the modeling of solar
modulation may be important [51, 72]. We reflect this in
Fig. 3 by depicting the limits derived in this less certain

mass range, where the peak of the signal e+ flux falls
below 5GeV, with dotted (rather than solid) lines.

For comparison, we have also considered a collection
of physical background models in which we calculated
the expected primary and secondary lepton fluxes using
GALPROP, and then added the contribution from all
galactic pulsars. While this leads to an almost identical
description of the background at high energies as in the
phenomenological model, small differences are manifest
at lower energies due to solar modulation and a spec-
tral break [53, 73, 74] in the CR injection spectrum at a
few GeV (both neglected in the AMS parameterization).
We cross-check our fit to the AMS positron fraction with
lepton measurements by Fermi [61]. Using these physical
background models in our fits, instead of the phenomeno-
logical AMS parameterization, the limits do not change
significantly. The arguably most extreme case would be
the appearance of dips in the background due to the su-
perposition of several pulsar contributions, which might
conspire with a hidden DM signal at almost exactly the
same energy. We find that in such situations, the real lim-
its on the annihilation rate could be weaker (or stronger)
by up to roughly a factor of 3 for any individual value of
mχ. We refer to the accompanying material in the Ap-
pendix for more details and further discussion of possible
systematics that might affect our analysis.

Lastly, we note that the upper limits on ⟨σv⟩(mχ) re-
ported in Fig. 3 can easily be translated into upper limits
on the decay width of a DM particle of mass 2mχ via
Γ ≃ ⟨σv⟩ρ⊙χ /mχ. We checked explicitly that this sim-
ple transformation is correct to better than 10% for the
L =4 kpc propagation scenario and e+e− and µ+µ− final
states over the full considered energy range.

Conclusions. In this Letter, we have considered a
possible dark matter contribution to the recent AMS cos-
mic ray positron fraction data. The high quality of this
data has allowed us for the first time to successfully per-
form a spectral analysis, similar to that used previously
in the context of gamma ray searches for DM. While we
have found no indication of a DM signal, we have derived
upper bounds on annihilation and decay rates into lep-
tonic final states that improve upon the most stringent
current limits by up to two orders of magnitude. For
light DM in particular, our limits for e+e− and µ+µ− fi-
nal states are significantly below the cross section naively
predicted for a simple thermal relic. When taken together
with constraints on DM annihilations to hadronic final
states from gamma rays [42] and antiprotons [22], this
new information significantly limits the range of models
which may contain a viable candidate for dark matter
with mχ ∼ O(10)GeV.

The AMS mission is planned to continue for 20 years.
With the total data set, we expect to be able to
strengthen the presented limits by at least a factor of
three in the energy range of 6–200GeV, and by more in
the likely case that systematics and the effective accep-
tance of the instrument improve.

The absence of spectral features in the AMS positron fraction gives limits on light 
leptophilic DM that are10-100 times stronger than current limits from CMB, or 

from dSph (similarly for the GC) 
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FIG. 4. Left panel: Limits obtained when different propagation models for the DM signal are adopted, using the power-law
background model adopted in the main text. Right panel: Limits derived using different, physically motivated, background
models. In both frames, the results are for the case of DM annihilations to e+e−.
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FIG. 5. The black line shows our nominal limit on e+e−

final states, obtained by adopting the power-law background
model. The gray lines, in contrast, show limits obtained when
the contribution from many pulsars is taken into account (for
15 different realizations).

calculated with the same galactic propagation model as
used in determining the spectrum of CR leptons from
DM. Keeping the background as described by the AMS
parametrization, and changing the diffusion conditions
(L = 2 − 8 kpc) in the Galaxy only affects our lim-
its by O(10%), while allowing for higher-energy losses
(Urad + UB = 2.6 eV cm−3) can alter our limits by a
factor of ∼2, with higher losses resulting in weaker limits
(see also Fig. 1). Once we replace the AMS background
parametrization with models in which we calculate sep-
arately the primary e−, secondary e± and pulsar origi-
nated e±, our results can be further altered by a factor
of up to ∼3. The reason for this change is that our phys-
ically motivated models describe the individual compo-
nents by power-laws with breaks. These spectral features
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FIG. 6. Significance for a contribution from a e+e− DM signal
to the AMS-02 positron fraction, for different DM energies,
in units of Gaussian sigma. Negative values correspond to
negative (but unphysical) signal normalizations.

in the background can be the result of different energy
loss mechanisms kicking in2, or from individual local and
recent supernovae affecting the high energy e− spectrum.
Also, observations at microwave and radio frequencies
suggest a different spectral power-law for the CR e± at
∼1GeV [54, 56, 73] compared to CR e± flux measure-
ments at higher energies [4, 78]. While changes in the
spectral power-law describing these components are mo-
tivated by the reasons just described, sharp breaks used

2 At few GeV the e± energy losses due to bremsstrahlung emis-
sion dominant at lower energies, equal locally those due to syn-
chrotron radiation and ICS (dominant at higher energies). Since
the energy loss rate dE/dt due to bremsstrahlung radiation scales
as E while the dE/dt due to synchrotron and ICS as E2 (at the
Thompson cross-section regime), a spectral change in the prop-
agated e± around that energy is expected.
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DM. Keeping the background as described by the AMS
parametrization, and changing the diffusion conditions
(L = 2 − 8 kpc) in the Galaxy only affects our lim-
its by O(10%), while allowing for higher-energy losses
(Urad + UB = 2.6 eV cm−3) can alter our limits by a
factor of ∼2, with higher losses resulting in weaker limits
(see also Fig. 1). Once we replace the AMS background
parametrization with models in which we calculate sep-
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nated e±, our results can be further altered by a factor
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in the background can be the result of different energy
loss mechanisms kicking in2, or from individual local and
recent supernovae affecting the high energy e− spectrum.
Also, observations at microwave and radio frequencies
suggest a different spectral power-law for the CR e± at
∼1GeV [54, 56, 73] compared to CR e± flux measure-
ments at higher energies [4, 78]. While changes in the
spectral power-law describing these components are mo-
tivated by the reasons just described, sharp breaks used

2 At few GeV the e± energy losses due to bremsstrahlung emis-
sion dominant at lower energies, equal locally those due to syn-
chrotron radiation and ICS (dominant at higher energies). Since
the energy loss rate dE/dt due to bremsstrahlung radiation scales
as E while the dE/dt due to synchrotron and ICS as E2 (at the
Thompson cross-section regime), a spectral change in the prop-
agated e± around that energy is expected.



the probability density fr0 depends only on the distance r0

to the source,

fr0ðr0Þ ¼
1

2!

Z 2!

0
d"0r0gðrðr0;"0Þ;"ðr0;"0ÞÞ: (4)

This function is shown in the right-hand panel of Fig. 2.
We assume that the sources are uniformly distributed in

time, i.e. their probability density ftðtÞ is

ftðtÞ ¼
!
1=tmax for 0 $ t $ tmax;
0 otherwise;

(5)

with tmax standing for the earliest time considered, which is
related to the minimum energy for which our calculation is
valid through:

tmax ¼ ðbEminÞ%1: (6)

The total number N of sources that are needed in the
Monte Carlo simulation to reproduce the (observed) num-
ber N ’ 300 of SNRs active in the Galaxy at any given
time depends on the average lifetime of a SNR, #SNR,
which is suggested to be &104 yr [18], hence

N ¼ 3' 106
"N
300

#"
tmax

108 yr

#"
#SNR
104 yr

#%1
: (7)

III. FITTING THE eþ þ e% SPECTRA

A schematic description of the present framework is
shown in Fig. 3. Cosmic rays are shock accelerated in
SNRs and then diffuse through the Galaxy to the Earth
undergoing collisions with interstellar matter en route and
creating secondary eþ. As discussed, the ratio of the sec-
ondary eþ to the primary e% from the sources should
decrease with energy, in contrast to the behavior seen by
PAMELA. We follow Ref. [19] in explaining this by
invoking a new component of eþ which is produced
through cosmic ray interactions in the SNRs, and then
shock accelerated, thus yielding a harder spectrum than
that of their primaries. We discuss these components in

turn below and calculate their relative contributions by
normalizing to the $-ray flux from the SNRs, which pro-
vides an independent measure of the hadronic interactions
therein.

A. Primary electrons

The radio and x-ray emission observed from SNRs is
interpreted as synchrotron radiation of electrons acceler-
ated up to energies of Oð100Þ TeV [18]. The spectrum of
this radiation then determines the spectrum of the under-
lying relativistic electrons. Moreover the theory of diffu-
sive shock acceleration [16,17] predicts similar spectra for
the accelerated protons and nuclei as for the electrons. If
the $-ray emission observed by HESS from a number of
identified SNRs is assumed to be of hadronic origin, we
can use the measured spectra to constrain both the relativ-
istic proton and electron population.
Table I shows a compilation of $-ray sources observed

by HESS that have been identified as SNRs. We have
included all identified shell-type SNRs and strong SNR
candidates in the HESS source catalog [49], and also added
the SNRs IC 443, Cassiopeia A andMonoceros. Actually it
is not clear that the acceleration of secondaries does occur
in all the SNRs considered, especially when the $-ray
emission is associated with a neighboring molecular cloud
rather than coming from the vicinity of the shock wave. In
fact the $ rays could equally well be due to inverse-
Compton scattering by the relativistic electrons respon-
sible for the observed synchroton radio and x-ray emission.
Therefore, we have considered three possibilities—includ-
ing all sources implies a mean power-law spectral index for
the protons of h!i ¼ 2:5, while excluding steep spectrum
sources with !> 2:8 gives h!i ¼ 2:3 and excluding
sources with !> 2:6 yields h!i ¼ 2:4. In the following
we adopt the central value, ! ¼ 2:4, for the electron popu-
lation too, unless stated otherwise. This requires a com-
pression factor of r $ 3:3 in contrast to the value of r ¼ 4
expected for a strong shock, so there is clearly some
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FIG. 3 (color online). Schematic description of contributions to the galactic cosmic rays observed at the Earth in the present
framework.
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cosmic rays in the Galaxy is

nCR(E) = NCRRSN τesc(E). (7)

The equilibrium spectrum of secondary e− + e− pro-
duced by cosmic ray interactions in the Galaxy is de-
termined by a balance between injection, losses and
escape from the Galaxy. For the diffusion coefficient
D(E) ≈ 1028E0.6

GeV cm2s−1 the loss time is shorter than
the escape time at all energies above ∼ 10 GeV, namely
at all energies of interest for us. In this case the equilib-
rium spectrum of the diffuse secondary pairs can easily
be written as

n±(E) =
KNnHc

b(E)

∫ Emax

E

dE′′

∫

dE′nCR(E′)
dσ±(E′, E′′)

dE′
,

(8)
where nH is the gas density averaged over the volume
of the Galaxy (including disc and halo) and a coefficient
KN ∼ 1.2 − 1.8 is introduced to account for the inter-
action of nuclei other than hydrogen. Following [14] we
use KN = 1.8. Clearly, the choice of a different diffu-
sion coefficient in the Galaxy may lead to the need for a
more detailed solution, taking into account the interplay
between escape and losses. Moreover if a non-leaky box
model is used, a slightly different slope of the equilibrium
spectra is obtained, though the positron fraction remains
unaffected.

Similarly, for the secondary pairs produced inside the
sources, one has:

ns
±(E) = KNRSN

1

b(E)

∫ Emax

E

dE′Ns
±(E′), (9)

where Ns
±(E)dE = 4πp2 [f±,0 + (1/2)Q2τSN ] u2τSNdp is

the distribution function of pairs at the sources in energy
space instead of momentum space (we integrated Eq. (4)
over the downstream volume, exactly as for CRs).

Finally, for the spectrum of primary electrons in the
sources we adopt the standard procedure of assuming
that Ne(E) = KepNCR(E), where Kep ≈ 7 × 10−3. The
equilibrium spectrum of primary electrons is then:

ne(E) = KepRSN

1

b(E)

∫ Emax

E

dE′NCR(E′). (10)

Before illustrating the results of our calculations we dis-
cuss briefly the choice of diffusion coefficient in the accel-
erator, which is not the same as in the Galaxy, because of
the generation (and damping) of turbulence in the shock
region, either due to the same accelerated particles [11]
or due to fluid instabilities. Here we carry out the cal-
culations for a Bohm-like diffusion coefficient, which we
write as:

DB(E) = KB
1

3
rL(E)c = 3.3×1022KBB−1

µ EGeV cm2s−1.

(11)
Here Bµ is the local ordered magnetic field in units of
µG and the coefficient KB ≃ (B/δB)2 allows to consider

FIG. 1: Positron fraction as a function of energy. The data
points are the results of the PAMELA measurement.

faster diffusion (KB > 1), which is common when mag-
netic field amplification is not as efficient.

These are all the ingredients needed for the calcula-
tion of the positron and electron fluxes at Earth. The
positron fraction, defined as the ratio of the total flux
of positrons to the total flux of e− + e+, is plotted in
Fig. 1. The data points are the results of the PAMELA
measurement. The error bar on energy is of the order
of half the distance between two consecutive data points.
The solid line refers to the case of maximum energy of
the accelerated particles (and therefore also of the sec-
ondary particles after reacceleration) Emax = 100 TeV,
while the dash-dotted and dotted lines refer respectively
to Emax = 10 TeV and Emax = 3 TeV. The dashed curve
represents the standard contribution to the positron frac-
tion from secondary diffuse pairs. We adopt a reference
age τSN ≈ 104 years for a SNR. The three curves refer
to {KB, ngas,1, Bµ, u8} = {20, 1.3, 1, 0.5} for Emax = 100
TeV, {20, 2, 1, 0.5} for Emax = 10 TeV, and {20, 3, 1, 0.5}
for Emax = 3 TeV (ngas,1 is the gas density close to the
SNR in units of 1cm−3 and u8 = u1/108cm/s). One can
see that these values are appropriate for old supernova
remnants, which however are also expected to be the ones
that contribute the most to the cosmic ray flux below
the knee. Unfortunately during such phase the maxi-
mum energy of accelerated particles decreases in time in
a way which is very uncertain: slowly in the case of no
damping and rather fast if effective magnetic field am-
plification and damping are present. This is the reason
why in Fig. 1 we considered the three values of Emax.
A solid evaluation of this effect can only be achieved by
carrying out a fully time dependent calculation (Caprioli
and Blasi, in preparation). A prediction of this scenario
is that the positron fraction grows and eventually levels
out at ∼ 40− 50%. The fluxes of electrons and positrons
are plotted in Fig. 2 for the case Emax = 100 TeV. We
assumed that the closest source of cosmic rays is located

Blasi, PRL 2009

Interplay of three typical timescales for CRs: Spallation, Escape and Acceleration inside 
the Sources. 

⌧ spallA!B < ⌧escAIf: , then we have secondaries produced inside the acceleration region

If: ⌧acc < ⌧spall , then secondaries are efficiently accelerated

AccA ! SpallA!B ! AccB ! Escape !So:

Propagation ! Obesrvation



2

sions inside of SNRs and then accelerated before escap-
ing into the interstellar medium (ISM) [25, 26]. It is this
case that we consider in this study. In particular, within
this scenario, the same stochastic acceleration processes
which accelerate CR positrons in the supernova shocks
will also accelerate other species of CR secondaries, such
as antiprotons and boron nuclei. Thus, as was shown
in Refs. [26, 45], a rise in the antiproton-to-proton and
boron-to-carbon ratios are also expected to occur at high
energies, >∼ 100 GeV (see though [46, 47]). Recently, the
PAMELA [48] and AMS [49] collaborations presented
their first measurements of the boron-to-carbon ratio, re-
vealing no evidence for any rise up to the highest mea-
sured energies, ∼400 GeV. In this paper, we make use
of this measurement to place constraints on models in
which the observed rise in the CR positron fraction is
the result of the acceleration of positron secondaries.

The remainder of this article is structured as follows.
In Sec. II, we describe our calculations of the boron-
to-carbon ratio, the antiproton-to-proton ratio, and the
positron fraction in some detail. We then present our
results in Sec. III. We find that secondary acceleration
models capable of explaining the observed positron frac-
tion are also incompatible with the boron-to-carbon ra-
tio, as measured by AMS and PAMELA. We summarize
our results and conclusions in Sec. IV.

II. CALCULATION SETUP AND
ASSUMPTIONS

Diffusive shock acceleration in galactic SNRs can be re-
sponsible for the spectrum of CRs up to ∼ PeV energies
(at much higher energies, extragalactic sources are pre-
sumably responsible). Ambient electrons, protons, and
nuclei are accelerated by the shock front, generating a
spectrum that is expected to take a power-law form,
dN/dE ∝ E−γ+2, where the index γ depends on the
conditions of the shock. For a supersonic shock the com-
pression ratio, r = v−/v+, is taken to be r = 4, where
v+ is the plasma down-stream velocity (inside the shock)
and v− the plasma up-stream velocity (outside the shock)
(both defined in the frame of the shock front). The index
γ is related to r by γ = 3r/(r−1). For r = 4, this yields a
E−2 injection spectrum for the primary CR component.

While being accelerated inside of the supernova shock,
these particles may also interact with the dense gas and
spallate or decay to produce lighter species [25, 26]. The
relevant source term for these lighter species is given by:

Qi(Ekin) = ΣjNj(Ekin)

[

σsp
j→i β c ngas +

1

Ekin τdecj→i

]

,

(1)
where Ekin is the kinetic energy per nucleon (in GeV),
Nj gives the spectrum of the parent nucleus species j,
σsp
j→i is the partial cross section from species j to species

i, τdecj→i is the timescale for the decay of species j to i, and
ngas is the density of gas where the spallation occurs.

The same processes also provide a corresponding loss
term:

Γi(Ekin) = σsp
i β c ngas +

1

Ekin τdeci

, (2)

where σsp
i and τdeci are the total spallation cross section

and total decay lifetime of nuclei species i, respectively.
Combining Eqs. 1 and 2 with the effects of advection,

diffusion, and adiabatic energy losses, one gets the trans-
port equation for species i:

v
∂fi
∂x

= Di
∂2fi
∂x2

+
1

3

dv

dx
p
∂fi
∂p

− Γifi + qi, (3)

where fi is the phase space density of CR species i and qi
is the relevant source term. CRs are typically accelerated
in the shock over a timescale on the order of τSN

∼ 104

yr. If enough nuclei of species i are produced via spal-
lation or decay, and are accelerated in the SNR before
undergoing further spallation or decay (1/Γi ≫ τacc),
this can have a significant impact on the CR spectrum.
The additional component resulting from this process is
referred to as the secondary CRs accelerated inside of the
SNRs. The authors of Ref. [26] solved Eq. 3 analytically
and calculated the phase space densities for particles, i,
both up-stream and down-stream from the shock front,
including both primary and secondary accelerated CRs.
Here, we will use the same formalism, and present por-
tions of their calculation where necessary (see Ref. [26]
for more details).

In solving Eq. 3, we apply the boundary conditions
that the phase space density for species i far up-stream
(far away from the supernova shock) is equal to the am-
bient density Yi, and its gradient in momentum is zero:

lim
x→−∞

fi(x, p) = Yiδ(p− p0), (4)

lim
x→−∞

∂fi(x, p)

∂p
= 0.

Following Ref. [26], the the phase space density down-
stream, f+

i , is given by:

f+
i (x, p) = fi(0, p) +

q+i (0, p)− Γ+
i (p)fi(0, p)

v+
x, (5)

where x is the distance from the shock front and q±i is
the total source term for species i, given by:

q±i (x, p) = Σj>i fj Γ
±
j→i. (6)

The only difference between Γ+ and Γ− comes from
different down-stream and up-stream gas densities. Ig-
noring the decay lifetimes of CRs inside and around
the supernova shock, we get that q+i /q

−
i = Γ+

i /Γ
−
i =

n+
gas/n

−
gas = r. Following Ref. [26], we also assume that

D+
i = D−

i .
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ing into the interstellar medium (ISM) [25, 26]. It is this
case that we consider in this study. In particular, within
this scenario, the same stochastic acceleration processes
which accelerate CR positrons in the supernova shocks
will also accelerate other species of CR secondaries, such
as antiprotons and boron nuclei. Thus, as was shown
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vealing no evidence for any rise up to the highest mea-
sured energies, ∼400 GeV. In this paper, we make use
of this measurement to place constraints on models in
which the observed rise in the CR positron fraction is
the result of the acceleration of positron secondaries.
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tio, as measured by AMS and PAMELA. We summarize
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sponsible for the spectrum of CRs up to ∼ PeV energies
(at much higher energies, extragalactic sources are pre-
sumably responsible). Ambient electrons, protons, and
nuclei are accelerated by the shock front, generating a
spectrum that is expected to take a power-law form,
dN/dE ∝ E−γ+2, where the index γ depends on the
conditions of the shock. For a supersonic shock the com-
pression ratio, r = v−/v+, is taken to be r = 4, where
v+ is the plasma down-stream velocity (inside the shock)
and v− the plasma up-stream velocity (outside the shock)
(both defined in the frame of the shock front). The index
γ is related to r by γ = 3r/(r−1). For r = 4, this yields a
E−2 injection spectrum for the primary CR component.

While being accelerated inside of the supernova shock,
these particles may also interact with the dense gas and
spallate or decay to produce lighter species [25, 26]. The
relevant source term for these lighter species is given by:

Qi(Ekin) = ΣjNj(Ekin)
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σsp
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where Ekin is the kinetic energy per nucleon (in GeV),
Nj gives the spectrum of the parent nucleus species j,
σsp
j→i is the partial cross section from species j to species

i, τdecj→i is the timescale for the decay of species j to i, and
ngas is the density of gas where the spallation occurs.

The same processes also provide a corresponding loss
term:

Γi(Ekin) = σsp
i β c ngas +
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Ekin τdeci

, (2)

where σsp
i and τdeci are the total spallation cross section

and total decay lifetime of nuclei species i, respectively.
Combining Eqs. 1 and 2 with the effects of advection,

diffusion, and adiabatic energy losses, one gets the trans-
port equation for species i:
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where fi is the phase space density of CR species i and qi
is the relevant source term. CRs are typically accelerated
in the shock over a timescale on the order of τSN

∼ 104

yr. If enough nuclei of species i are produced via spal-
lation or decay, and are accelerated in the SNR before
undergoing further spallation or decay (1/Γi ≫ τacc),
this can have a significant impact on the CR spectrum.
The additional component resulting from this process is
referred to as the secondary CRs accelerated inside of the
SNRs. The authors of Ref. [26] solved Eq. 3 analytically
and calculated the phase space densities for particles, i,
both up-stream and down-stream from the shock front,
including both primary and secondary accelerated CRs.
Here, we will use the same formalism, and present por-
tions of their calculation where necessary (see Ref. [26]
for more details).

In solving Eq. 3, we apply the boundary conditions
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(far away from the supernova shock) is equal to the am-
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The only difference between Γ+ and Γ− comes from
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gas = r. Following Ref. [26], we also assume that
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our results and conclusions in Sec. IV.
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and calculated the phase space densities for particles, i,
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including both primary and secondary accelerated CRs.
Here, we will use the same formalism, and present por-
tions of their calculation where necessary (see Ref. [26]
for more details).
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FIG. 1: The ratio of the secondary cosmic ray acceleration
term to the primary cosmic ray acceleration term in Eqs. 7
and 8, as a function of momentum per nucleon. The impact
of including the acceleration of secondary cosmic rays pro-
duced inside and around the supernova shock front is most
important at high energies and for lighter species. For 10B
the ratio is significantly higher since f−∞

10B
is suppressed. As

in Ref. [26], we have adopted optimistic values for KB , B,
n−
gas, v− and r (see text for more details).

Integrating the transport equation over infinitesimal
distance one gets [26]:

p
∂fi(x, p)

∂p
= −γfi(0, p)− γ(1 + r2)

Γ−
i (p)D

−
i (p)

(v−)2
fi(0, p)

+ γ[(1 + r2)
q−i (0, p)D−

i (p)

(v−)2
+ Yiδ(p− p0)].(7)

The solution to which yields:

fi(0, p) =

∫ p

0

dp′

p′

(

p′

p

)γ

e−γ(1+r2)(D−
i
(p)−D−

i
(p′))Γ−

i
(p)/(v−)2

× γ[(1 + r2)
q−i (0, p′)D−

i (p
′)

(v−)2
+ Yiδ(p

′
− p0)]. (8)

Following Refs. [25, 26], we assume Bohm diffusion for
CRs around the shock front:

D±
i (E) =

KB rL(E) c

3
= 3.3×1022KB B−1 E Z−1

i cm2 s−1,

(9)
where rL is the Larmor radius around the shock front,
B is the magnetic field in µG, Z the atomic number
of the CR nucleus i, and E is the energy in GeV. KB

is a “fudge factor” [26] which scales approximately as
KB ≃ (B/δB)2 [25], allowing for faster diffusion of CRs
around the shock front. Values of KB >> 1 have been
suggested [25, 26] under conditions where magnetic field
amplification is inefficient.

The importance of including the acceleration of sec-
ondary CRs produced inside and around the supernova
shock front varies with energy and CR species. In Fig. 1
we show the ratio of the secondary CR acceleration term
of Eqs. 7 and 8, (1+ r2)q−i (0, p)D

−
i (p)/(v

−)2, to the pri-
mary CR acceleration term, Yiδ(p − p0) = f−∞

i , as a

function of momentum per nucleon. This ratio increases
with energy and is greater for the lighter species. This
demonstrates that the acceleration of CR secondaries is
most important in the case of light nuclear species, and
at high energies. As in Ref. [26], we have adopted the fol-
lowing parameter values: KB = 40, B = 1 µG, n−

gas = 2
cm−3, v− = 0.5 × 108 cm3 s−1, and r = 4, which have
been suggested from the observed titanium-to-iron ratio,
and are also similar to those proposed from the positron
fraction (KB = 20 [25]).

We calculate the far up-stream phase space densities
from the measured CR densities for Fe, Si, Mg Ne, O, N,
C, B, He, and p [49, 50], taking into account the relative
isotopic abundances. For the calculation of the boron-to-
carbon ratio, we start from 18O and go down to 10Be.2

We employ the relevant total and partial cross sections
(see Refs. [51, 52]). We then use the same formulation to
calculate the antiproton-to-proton ratio, and the positron
fraction, including helium and proton CRs. We start
from the heaviest isotope and solve Eqs. 6 and 8 to obtain
the injected spectrum of CRs after integrating over the
volume of the SNR:

Ni(E) = 16π2

∫ v+τSN

0
dx p2f+

i (x, p) (v+τSN
− x)2.

(10)
We take τSN = 2× 104 yr and v+ = 1.25× 107 cm s−1.

Once CRs are injected into the ISM, they propagate
in the galactic medium. Depending on the CR species
and their energy scale, there are various possibly rele-
vant time-scales. The CR diffusion, the CR advection,
the diffusive re-acceleration time-scales, the decay time-
scale and the total energy losses time-scale. In addition,
as we stated earlier, CR secondaries are produced in the
interstellar medium. Depending on the aimed level of ac-
curacy and which are the important time-scales, one can
solve the propagation equation for CRs analytically, in-
cluding only diffusion and advection (see [53]), use a leaky
box approximation (as we do), or solve numerically in-
cluding all effects [54–56]. For CR protons, anti-protons,
Boron and Carbon and for the energies at hand, advec-
tion, re-acceleration and energy losses in the interstellar
medium are subdominant (for CR electrons and positrons
energy losses have to be included). These CRs diffuse
within a zone of scale height L ∼ 1 - 8 kpc [57, 58], be-
yond which they are free to escape. The escape timescale
for a CR nucleus i is τesci (E) ≃ τesc1 × (E/Z)−δ, where E
is in GeV, Z is the atomic number, and δ is the diffusion
index. The normalization, τesc1 , and the index, δ, can be
extracted by fitting the boron-to-carbon ratio at energies
below ∼ 30 GeV, where the effects of the acceleration of
secondaries inside SNRs are subdominant.

The density of CR nuclei at Earth (neglecting solar

2 10Be decays to 10B with a lifetime of 1.36 Myr.
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FIG. 1: The ratio of the secondary cosmic ray acceleration
term to the primary cosmic ray acceleration term in Eqs. 7
and 8, as a function of momentum per nucleon. The impact
of including the acceleration of secondary cosmic rays pro-
duced inside and around the supernova shock front is most
important at high energies and for lighter species. For 10B
the ratio is significantly higher since f−∞

10B
is suppressed. As

in Ref. [26], we have adopted optimistic values for KB , B,
n−
gas, v− and r (see text for more details).

Integrating the transport equation over infinitesimal
distance one gets [26]:
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= −γfi(0, p)− γ(1 + r2)

Γ−
i (p)D

−
i (p)

(v−)2
fi(0, p)

+ γ[(1 + r2)
q−i (0, p)D−

i (p)

(v−)2
+ Yiδ(p− p0)].(7)

The solution to which yields:

fi(0, p) =

∫ p

0

dp′

p′

(

p′

p

)γ

e−γ(1+r2)(D−
i
(p)−D−

i
(p′))Γ−

i
(p)/(v−)2

× γ[(1 + r2)
q−i (0, p′)D−

i (p
′)

(v−)2
+ Yiδ(p

′
− p0)]. (8)

Following Refs. [25, 26], we assume Bohm diffusion for
CRs around the shock front:

D±
i (E) =

KB rL(E) c

3
= 3.3×1022KB B−1 E Z−1

i cm2 s−1,

(9)
where rL is the Larmor radius around the shock front,
B is the magnetic field in µG, Z the atomic number
of the CR nucleus i, and E is the energy in GeV. KB

is a “fudge factor” [26] which scales approximately as
KB ≃ (B/δB)2 [25], allowing for faster diffusion of CRs
around the shock front. Values of KB >> 1 have been
suggested [25, 26] under conditions where magnetic field
amplification is inefficient.

The importance of including the acceleration of sec-
ondary CRs produced inside and around the supernova
shock front varies with energy and CR species. In Fig. 1
we show the ratio of the secondary CR acceleration term
of Eqs. 7 and 8, (1+ r2)q−i (0, p)D

−
i (p)/(v

−)2, to the pri-
mary CR acceleration term, Yiδ(p − p0) = f−∞

i , as a

function of momentum per nucleon. This ratio increases
with energy and is greater for the lighter species. This
demonstrates that the acceleration of CR secondaries is
most important in the case of light nuclear species, and
at high energies. As in Ref. [26], we have adopted the fol-
lowing parameter values: KB = 40, B = 1 µG, n−

gas = 2
cm−3, v− = 0.5 × 108 cm3 s−1, and r = 4, which have
been suggested from the observed titanium-to-iron ratio,
and are also similar to those proposed from the positron
fraction (KB = 20 [25]).

We calculate the far up-stream phase space densities
from the measured CR densities for Fe, Si, Mg Ne, O, N,
C, B, He, and p [49, 50], taking into account the relative
isotopic abundances. For the calculation of the boron-to-
carbon ratio, we start from 18O and go down to 10Be.2

We employ the relevant total and partial cross sections
(see Refs. [51, 52]). We then use the same formulation to
calculate the antiproton-to-proton ratio, and the positron
fraction, including helium and proton CRs. We start
from the heaviest isotope and solve Eqs. 6 and 8 to obtain
the injected spectrum of CRs after integrating over the
volume of the SNR:

Ni(E) = 16π2

∫ v+τSN

0
dx p2f+

i (x, p) (v+τSN
− x)2.

(10)
We take τSN = 2× 104 yr and v+ = 1.25× 107 cm s−1.

Once CRs are injected into the ISM, they propagate
in the galactic medium. Depending on the CR species
and their energy scale, there are various possibly rele-
vant time-scales. The CR diffusion, the CR advection,
the diffusive re-acceleration time-scales, the decay time-
scale and the total energy losses time-scale. In addition,
as we stated earlier, CR secondaries are produced in the
interstellar medium. Depending on the aimed level of ac-
curacy and which are the important time-scales, one can
solve the propagation equation for CRs analytically, in-
cluding only diffusion and advection (see [53]), use a leaky
box approximation (as we do), or solve numerically in-
cluding all effects [54–56]. For CR protons, anti-protons,
Boron and Carbon and for the energies at hand, advec-
tion, re-acceleration and energy losses in the interstellar
medium are subdominant (for CR electrons and positrons
energy losses have to be included). These CRs diffuse
within a zone of scale height L ∼ 1 - 8 kpc [57, 58], be-
yond which they are free to escape. The escape timescale
for a CR nucleus i is τesci (E) ≃ τesc1 × (E/Z)−δ, where E
is in GeV, Z is the atomic number, and δ is the diffusion
index. The normalization, τesc1 , and the index, δ, can be
extracted by fitting the boron-to-carbon ratio at energies
below ∼ 30 GeV, where the effects of the acceleration of
secondaries inside SNRs are subdominant.

The density of CR nuclei at Earth (neglecting solar
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of including the acceleration of secondary cosmic rays pro-
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the ratio is significantly higher since f−∞
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is suppressed. As

in Ref. [26], we have adopted optimistic values for KB , B,
n−
gas, v− and r (see text for more details).

Integrating the transport equation over infinitesimal
distance one gets [26]:
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CRs around the shock front:
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= 3.3×1022KB B−1 E Z−1
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(9)
where rL is the Larmor radius around the shock front,
B is the magnetic field in µG, Z the atomic number
of the CR nucleus i, and E is the energy in GeV. KB

is a “fudge factor” [26] which scales approximately as
KB ≃ (B/δB)2 [25], allowing for faster diffusion of CRs
around the shock front. Values of KB >> 1 have been
suggested [25, 26] under conditions where magnetic field
amplification is inefficient.

The importance of including the acceleration of sec-
ondary CRs produced inside and around the supernova
shock front varies with energy and CR species. In Fig. 1
we show the ratio of the secondary CR acceleration term
of Eqs. 7 and 8, (1+ r2)q−i (0, p)D

−
i (p)/(v

−)2, to the pri-
mary CR acceleration term, Yiδ(p − p0) = f−∞

i , as a

function of momentum per nucleon. This ratio increases
with energy and is greater for the lighter species. This
demonstrates that the acceleration of CR secondaries is
most important in the case of light nuclear species, and
at high energies. As in Ref. [26], we have adopted the fol-
lowing parameter values: KB = 40, B = 1 µG, n−

gas = 2
cm−3, v− = 0.5 × 108 cm3 s−1, and r = 4, which have
been suggested from the observed titanium-to-iron ratio,
and are also similar to those proposed from the positron
fraction (KB = 20 [25]).

We calculate the far up-stream phase space densities
from the measured CR densities for Fe, Si, Mg Ne, O, N,
C, B, He, and p [49, 50], taking into account the relative
isotopic abundances. For the calculation of the boron-to-
carbon ratio, we start from 18O and go down to 10Be.2

We employ the relevant total and partial cross sections
(see Refs. [51, 52]). We then use the same formulation to
calculate the antiproton-to-proton ratio, and the positron
fraction, including helium and proton CRs. We start
from the heaviest isotope and solve Eqs. 6 and 8 to obtain
the injected spectrum of CRs after integrating over the
volume of the SNR:

Ni(E) = 16π2

∫ v+τSN

0
dx p2f+

i (x, p) (v+τSN
− x)2.

(10)
We take τSN = 2× 104 yr and v+ = 1.25× 107 cm s−1.

Once CRs are injected into the ISM, they propagate
in the galactic medium. Depending on the CR species
and their energy scale, there are various possibly rele-
vant time-scales. The CR diffusion, the CR advection,
the diffusive re-acceleration time-scales, the decay time-
scale and the total energy losses time-scale. In addition,
as we stated earlier, CR secondaries are produced in the
interstellar medium. Depending on the aimed level of ac-
curacy and which are the important time-scales, one can
solve the propagation equation for CRs analytically, in-
cluding only diffusion and advection (see [53]), use a leaky
box approximation (as we do), or solve numerically in-
cluding all effects [54–56]. For CR protons, anti-protons,
Boron and Carbon and for the energies at hand, advec-
tion, re-acceleration and energy losses in the interstellar
medium are subdominant (for CR electrons and positrons
energy losses have to be included). These CRs diffuse
within a zone of scale height L ∼ 1 - 8 kpc [57, 58], be-
yond which they are free to escape. The escape timescale
for a CR nucleus i is τesci (E) ≃ τesc1 × (E/Z)−δ, where E
is in GeV, Z is the atomic number, and δ is the diffusion
index. The normalization, τesc1 , and the index, δ, can be
extracted by fitting the boron-to-carbon ratio at energies
below ∼ 30 GeV, where the effects of the acceleration of
secondaries inside SNRs are subdominant.

The density of CR nuclei at Earth (neglecting solar
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where " and ‘cr are defined by Eq. (A2) of Appendix A, ‘
is the diffusion length defined by Eq. (A3), and h$
0:1 kpc is the height of the Galactic disk.

We calculate the flux of secondary background e% and
eþ from the solar-demodulated flux of GCR protons as
derived from the BESS data [52] and model the cross
sections according to Ref. [53]. The contribution from
kaon decay is subdominant and is therefore neglected.
The presence of He both in GCRs and in the ISM is taken
into account by multiplying the proton contribution by a
factor of 1.2. Our results are in good agreement with
Ref. [54], taking into account the different diffusion model
parameters and keeping in mind that convection and reac-
celeration have been neglected here. These fluxes are
shown (dashed line) in the middle panel of Fig. 5 and are
clearly a subdominant component which cannot account
for the deficit at high energies.

Moreover, the positron flux is falling at all energies
whereas the PAMELA data [1] clearly show a rise above
a few GeV. One way this can be resolved is if there is a dip
in the electron spectrum between$10 and 100 GeV. It has
been suggested that Klein-Nishina corrections to the
Thomson cross section for inverse-Compton scattering
[55] or inhomogeneities in the distribution of sources
[31] can produce such a dip. However the former would
require a rather enhanced interstellar background light
(IBL) field [55], while the latter calculation [31] assumes
an incomplete source distribution (see Sec. II) and more-
over adopts diffusion model parameters quite different
from those derived from the measured nuclear secondary-
to-primary ratios [56] and the measured Galactic magnetic
field and IBL [28].

The other, perhaps more straightforward possibility is to
consider an additional component of GCR positrons with a
harder source spectrum that results in a harder propagated
spectrum and therefore leads to an increase in the positron
fraction.

C. Secondary accelerated electrons and positrons

It has been suggested that acceleration of secondary e!

produced through pp interactions inside the same sources
where GCR protons are accelerated, e.g. SNRs, can pro-
duce a hard positron component [19]. We recapitulate here
the essential formalism of diffusive shock acceleration
[16,17] which yields the spectrum of the accelerated pro-
tons. This serves as the source term for calculating the
spectrum of the secondary e!.

The phase space density, f!, of secondary e% and eþ

produced by the primary GCR, both undergoing DSA, is
described by the steady state transport equation:

u
@f!
@x

¼ @

@x

!
D

@

@x
f!

"
þ 1

3

du

dx
p
@f!
@p

þ q!; (12)

where q! is the source term determined by solving an
analogous equation for the primary GCR protons.
(Ideally we should solve the time-dependent equation,
however we do not know the time dependence of the
parameters and can extract only their effective values
from observations. This ought to be a good approximation
for calculating ratios of secondaries to primaries from a
large number of sources which are in different stages of
evolution.) We consider the usual setup in the rest frame of
the shock front (at x ¼ 0) where u1 (u2) and n1 (n2) denote
the upstream (downstream) plasma velocity and density,
respectively. The compression ratio of the shock r ¼
u1=u2 ¼ n2=n1 determines the spectral index, # ¼
3r=ðr% 1Þ, of the GCR primaries in momentum space
(note # ¼ 2þ !). To recover # ’ 4:4 as determined
from #-ray observations (see Table I) we set r ’ 3:1. As
noted earlier the theoretical expectation is however r ¼ 4.
For x ! 0, Eq. (12) reduces to an ordinary differential

equation in x that is easily solved taking into account the
spatial dependence of the source term

q0!ðx; pÞ ¼
#
q0!;1ðpÞexu1=DðppÞ for x < 0;
q0!;2ðpÞ for x > 0;

(13)

where the proton momentum pp should be distinguished
from the (smaller) momentum p of the produced seconda-
ries, the two being related through the inelasticity of e!

production: $ ’ 1=20. Assuming D / p (Bohm diffusion)
in the SNR, the solution to the transport equation (12)
across the shock can then be written (see Appendix B):

f! ¼
8
<
:
f0!e

x=d1 % q0!;1

u1
d1ðe

x=d1%e$x=d1
$%$2 Þ for x < 0;

f0! þ q0!;2

u2
x for x > 0;

(14)

where d1 ( D=u1 is the effective size of the region where
e% and eþ participate in DSA (see Fig. 4).
The coefficients f0! appearing in Eq. (14) satisfy an

ordinary differential equation dictated by continuity across
the shock front (see Appendix B). This has the solution:

FIG. 4. DSA setup in the rest frame of the shock front. u1 (u2)
and n1 (n2) denote upstream (downstream) plasma velocity and
density, respectively. The right-hand panel shows the solution of
the transport equation for the primary GCRs. Particles within a
distance D=u of the shock front participate in the acceleration
process.

MARKUS AHLERS, PHILIPP MERTSCH, AND SUBIR SARKAR PHYSICAL REVIEW D 80, 123017 (2009)

123017-6

Some details on the ac-
celerated secondary CRs:

Source term inside the SNR:

Propagation inside the SNR (diffusion, advection, source, decay/spallation and adiabatic 
E losses):

Bohm diffusion:

Thus the source term of SNR CR changes:

and:

The impact of an individual SNR:
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FIG. 1: The ratio of the secondary cosmic ray acceleration
term to the primary cosmic ray acceleration term in Eqs. 7
and 8, as a function of momentum per nucleon. The impact
of including the acceleration of secondary cosmic rays pro-
duced inside and around the supernova shock front is most
important at high energies and for lighter species. For 10B
the ratio is significantly higher since f−∞

10B
is suppressed. As

in Ref. [26], we have adopted optimistic values for KB , B,
n−
gas, v− and r (see text for more details).

Integrating the transport equation over infinitesimal
distance one gets [26]:

p
∂fi(x, p)

∂p
= −γfi(0, p)− γ(1 + r2)

Γ−
i (p)D

−
i (p)

(v−)2
fi(0, p)

+ γ[(1 + r2)
q−i (0, p)D−

i (p)

(v−)2
+ Yiδ(p− p0)].(7)

The solution to which yields:

fi(0, p) =

∫ p

0

dp′

p′

(

p′

p

)γ

e−γ(1+r2)(D−
i
(p)−D−

i
(p′))Γ−

i
(p)/(v−)2

× γ[(1 + r2)
q−i (0, p′)D−

i (p
′)

(v−)2
+ Yiδ(p

′
− p0)]. (8)

Following Refs. [25, 26], we assume Bohm diffusion for
CRs around the shock front:

D±
i (E) =

KB rL(E) c

3
= 3.3×1022KB B−1 E Z−1

i cm2 s−1,

(9)
where rL is the Larmor radius around the shock front,
B is the magnetic field in µG, Z the atomic number
of the CR nucleus i, and E is the energy in GeV. KB

is a “fudge factor” [26] which scales approximately as
KB ≃ (B/δB)2 [25], allowing for faster diffusion of CRs
around the shock front. Values of KB >> 1 have been
suggested [25, 26] under conditions where magnetic field
amplification is inefficient.

The importance of including the acceleration of sec-
ondary CRs produced inside and around the supernova
shock front varies with energy and CR species. In Fig. 1
we show the ratio of the secondary CR acceleration term
of Eqs. 7 and 8, (1+ r2)q−i (0, p)D

−
i (p)/(v

−)2, to the pri-
mary CR acceleration term, Yiδ(p − p0) = f−∞

i , as a

function of momentum per nucleon. This ratio increases
with energy and is greater for the lighter species. This
demonstrates that the acceleration of CR secondaries is
most important in the case of light nuclear species, and
at high energies. As in Ref. [26], we have adopted the fol-
lowing parameter values: KB = 40, B = 1 µG, n−

gas = 2
cm−3, v− = 0.5 × 108 cm3 s−1, and r = 4, which have
been suggested from the observed titanium-to-iron ratio,
and are also similar to those proposed from the positron
fraction (KB = 20 [25]).

We calculate the far up-stream phase space densities
from the measured CR densities for Fe, Si, Mg Ne, O, N,
C, B, He, and p [49, 50], taking into account the relative
isotopic abundances. For the calculation of the boron-to-
carbon ratio, we start from 18O and go down to 10Be.2

We employ the relevant total and partial cross sections
(see Refs. [51, 52]). We then use the same formulation to
calculate the antiproton-to-proton ratio, and the positron
fraction, including helium and proton CRs. We start
from the heaviest isotope and solve Eqs. 6 and 8 to obtain
the injected spectrum of CRs after integrating over the
volume of the SNR:

Ni(E) = 16π2

∫ v+τSN

0
dx p2f+

i (x, p) (v+τSN
− x)2.

(10)
We take τSN = 2× 104 yr and v+ = 1.25× 107 cm s−1.

Once CRs are injected into the ISM, they propagate
in the galactic medium. Depending on the CR species
and their energy scale, there are various possibly rele-
vant time-scales. The CR diffusion, the CR advection,
the diffusive re-acceleration time-scales, the decay time-
scale and the total energy losses time-scale. In addition,
as we stated earlier, CR secondaries are produced in the
interstellar medium. Depending on the aimed level of ac-
curacy and which are the important time-scales, one can
solve the propagation equation for CRs analytically, in-
cluding only diffusion and advection (see [53]), use a leaky
box approximation (as we do), or solve numerically in-
cluding all effects [54–56]. For CR protons, anti-protons,
Boron and Carbon and for the energies at hand, advec-
tion, re-acceleration and energy losses in the interstellar
medium are subdominant (for CR electrons and positrons
energy losses have to be included). These CRs diffuse
within a zone of scale height L ∼ 1 - 8 kpc [57, 58], be-
yond which they are free to escape. The escape timescale
for a CR nucleus i is τesci (E) ≃ τesc1 × (E/Z)−δ, where E
is in GeV, Z is the atomic number, and δ is the diffusion
index. The normalization, τesc1 , and the index, δ, can be
extracted by fitting the boron-to-carbon ratio at energies
below ∼ 30 GeV, where the effects of the acceleration of
secondaries inside SNRs are subdominant.

The density of CR nuclei at Earth (neglecting solar

2 10Be decays to 10B with a lifetime of 1.36 Myr.
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modulation) is given by:

Ni(E) =
Σj>i(Γ

sp
j→i + 1/(Ekinτdecj→i))Nj(E) +RSNNi(E)

Γi(E) + 1/τesci (E)
.

(11)
RSN , is the galactic supernovae rate per volume (3 per
century in the galactic disk). For secondary electrons and
positrons produced in p-p and He-p collisions and then
further accelerated inside of the SNR, there are no decay
or spallation process to take into account (Γ±

e = 0), and
thus Eq. 8 simplifies to:

facc
e± (0, p) =

∫ p

0

dp′

p′

(

p′

p

)γ

γ(
1

ξ
+ r2)

q−e±(0, p)D
−
e (p

′)

(v−)2
.

(12)
We take ξ =0.05, as about 5% of the energy of the pri-
mary CR proton goes into each e± in an inelastic p-p
collision.3

Once released into the ISM, CR electrons and positrons
undergo diffusion and energy loss processes. In this work,
we focus on energies above 5 GeV where solar modula-
tion effects are small. Above a few GeV, the e± energy
losses are dominated by a combination of synchrotron
and inverse Compton scattering. We model these en-
ergy losses as dEe/dt = b(E)= b0(Ee/1GeV)2, with
b0 = −1.7 × 10−16 GeV s−1. The value for the b0
coefficient comes from estimates on the local magnetic
and radiation fields.4 The escape timescale for electrons,
τesce (E), is the same as that for protons, as at high ener-
gies (E ≫ m) they have the same rigidity. Their steady
state density is given by:

N
acc

e± (E) = RSN
1

b(E) + 1/τesce (E)

∫ Emax

E
dE′Nacc

e± (E′),

(13)
where Nacc

e± (E′) is calculated by replacing f+
i (x, p) with

facc
e± (x > 0, p) in Eqs. 5 and 10. We include both CR pro-

tons and CR helium nuclei in the source term of Eq. 12.
Any additional correction factor in Eq. 13 due to the im-
pact of heavier CR species is expected to be at the level
of ∼10%, and is highly dependent on the initial chemical
composition of the surrounding medium.

Primary CR electrons (due to the Ye−δ(p − p0) term

3 For CRs other than protons and antiprotons from p-p or p-He
collisions, ξ is taken to be 1 (the daughter particle produced
from spallation has, on average, about the same momentum per
nucleon as the CR primary).

4 We assume a local magnetic field value of B = 5µG, corre-
sponding to an energy density of Umag =0.62 eV/cm3. For
the local radiation energy density, we take Urad =0.82 eV/cm3

for the galactic radiation field and UCMB =0.26 eV/cm3 for
the cosmic microwave background. The energy loss rate is
dE
dt

≃ −
4

3
σT cγ2(Umag + Urad + UCMB) (where γ here is the

Lorentz boost).

not included in Eq. 12)5 are given by:

N
prim

e− (E) = Ke−RSN
1

b(E) + 1/τesce (E)

×

∫ Emax

E
dE′Nprim

e− (E′), (14)

where Emax is the maximum energy to which e± particles
are accelerated. We set the value of Ke− to match local
CR measurements.

Finally, CR e± are also produced in p-p and He-p col-
lisions in the ISM. We ignore diffusive re-acceleration in
the ISM, as its impact is expected to be subdominant
above a few GeV. The secondary CR e± flux is given by:

N
sec

e± (E) = nISMc
1

b(E) + 1/τesce (E)

∫ Emax

E
dE′′ (15)

∫ ∞

5E′′

dE′ΣiN
prim

i (E′)
dσi→e± (E

′, E′′)

dE′
,

where the sum is carried out over protons and helium nu-
clei. E′′ is the energy of the secondary e± at production
and E′ the energy of the parent CRs in the ISM. The
factor of 5 in the lower limit of integration comes from
the fact that a charged pion produced in a p-p collision
carries approximately 1/5 of the energy of the parent CR
proton.6 It is the decays of these charged pions that pro-
duce the secondary electrons and positrons.

When comparing our results to observations, we in-
clude the effects of solar modulation, using the force field
approximation [59]. More recent models include charge-
sign dependent solar modulation [60–62] and can impact
the positron fraction and the antiproton-proton ratios by
changing differently the fluxes of electrons(antiprotons)
from positrons(protons) of the same energy before en-
tering the Heliosphere. Even in those cases though, the
effects of solar modulation on the CR ratios is always
negligible above 10 GeV (GeV/n) [62].

III. RESULTS

In Fig. 2, we show the CR boron-to-carbon ratio as a
function of energy, as predicted for a range of parameter
values. In each frame, the dotted black curve denotes
the prediction assuming that secondary cosmic rays are
produced only in the ISM, and are not subsequently ac-
celerated. In the left frames, this was calculated using
Eq. 8 with q−i = 0, and adopting parameter values of

5 We ignore in this paper the presence of positrons in the ambi-
ent interstellar medium. That is a simplification since we have
observed positrons at many different energies. Yet their ratio to
electrons is not known at energies much lower than 0.5 GeV.

6 Our results do not depend significantly on the precise value of
this lower limit of integration.

Accounting for all galactic SNRs and 	

including propagation effects:
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FIG. 2: The cosmic ray boron-to-carbon ratio predicted for various parameter choices. In each frame, the black dotted curves
represent the prediction without any contribution from the acceleration of secondary CRs in SNR shocks. In the the left frames,
this is calculated according to Eq. 8 with q−i = 0, whereas in the right frames we have used GALPROP (see text for details).
The other curves include contributions from accelerated secondaries. In the upper frames, we consider different values of KB ,
and set n−

gas = 2 cm−3. In the lower frames, we set KB = 40 and vary the value of n−
gas. In all frames, we set B = 1 µG, v− =

0.5×10
8 cm s−1 and r = 4. In each frame, the solid blue, dashed green, and dashed-dotted brown curves represent parameter

choices that are incompatible with the measured boron-to-carbon spectrum at the 95%, 99%, and 99.9% confidence levels,
respectively (using the combination of data from AMS and PAMELA; HEAO 3 data is shown only for comparison). We also
include in each frame the prediction for an even more extreme parameter value (KB = 40, n−

gas =2.0 cm−3) for comparison
with Ref.[26].

In both the left and right frames, the dotted black curves
are in good agreement with the data at all energies from
PAMELA and AMS, yielding fits with a χ2 per degree-
of-freedom of 0.50 and 0.35, respectively.

The most important parameters for our calculation are
the magnetic field B (which we take to be fixed at 1µG),
the shock compression ratio r (which we fix to r = 4), the
up-stream velocity v− (which we fix to v−=0.5×108 cm
s−1), the up-stream gas density n−

gas (which we allow to
vary), and the factor KB which is related to the efficiency
of diffusion around the shock (which we also allow to
vary). For the purposes of our calculations, KB and B
are degenerate quantities (see Eq. 9), thus we choose to
vary only KB. Also KB, B, n−

gas, v
− and r are connected

since they all appear in the secondary CR acceleration
term of Eqs. 7 and 8, (1 + r2)q−(0, p)iD

−
i (p)/(v

−)2 (see
also Eqs. 2, 5 and 6). For this reason, we also choose to

vary the value of n−
gas.

In Fig. 2, we show the predicted boron-to-carbon ra-
tio, including the contribution from secondaries produced
and accelerated in SNRs, for a range of parameter val-
ues. In the upper frames, we set n−

gas = 2 cm−3 and
vary KB, while in the lower frames we set KB = 40 and
consider different values of n−

gas. In each frame, the solid
blue, dashed green, and dashed-dotted brown curves de-
note the parameter values which are incompatible with
the boron-to-carbon measurements at the 95%, 99% and
99.9% confidence levels, respectively. We also show in
each frame the result using a more extreme parameter
value, incompatible with the measured boron-to-carbon
ratio.

Previous authors have suggested that the observed
titanium-to-iron ratio and/or the positron fraction could
be explained for parameter values of n−

gas = 2 cm−3 and
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FIG. 2: The cosmic ray boron-to-carbon ratio predicted for various parameter choices. In each frame, the black dotted curves
represent the prediction without any contribution from the acceleration of secondary CRs in SNR shocks. In the the left frames,
this is calculated according to Eq. 8 with q−i = 0, whereas in the right frames we have used GALPROP (see text for details).
The other curves include contributions from accelerated secondaries. In the upper frames, we consider different values of KB ,
and set n−

gas = 2 cm−3. In the lower frames, we set KB = 40 and vary the value of n−
gas. In all frames, we set B = 1 µG, v− =

0.5×10
8 cm s−1 and r = 4. In each frame, the solid blue, dashed green, and dashed-dotted brown curves represent parameter

choices that are incompatible with the measured boron-to-carbon spectrum at the 95%, 99%, and 99.9% confidence levels,
respectively (using the combination of data from AMS and PAMELA; HEAO 3 data is shown only for comparison). We also
include in each frame the prediction for an even more extreme parameter value (KB = 40, n−

gas =2.0 cm−3) for comparison
with Ref.[26].

In both the left and right frames, the dotted black curves
are in good agreement with the data at all energies from
PAMELA and AMS, yielding fits with a χ2 per degree-
of-freedom of 0.50 and 0.35, respectively.

The most important parameters for our calculation are
the magnetic field B (which we take to be fixed at 1µG),
the shock compression ratio r (which we fix to r = 4), the
up-stream velocity v− (which we fix to v−=0.5×108 cm
s−1), the up-stream gas density n−

gas (which we allow to
vary), and the factor KB which is related to the efficiency
of diffusion around the shock (which we also allow to
vary). For the purposes of our calculations, KB and B
are degenerate quantities (see Eq. 9), thus we choose to
vary only KB. Also KB, B, n−

gas, v
− and r are connected

since they all appear in the secondary CR acceleration
term of Eqs. 7 and 8, (1 + r2)q−(0, p)iD

−
i (p)/(v

−)2 (see
also Eqs. 2, 5 and 6). For this reason, we also choose to

vary the value of n−
gas.

In Fig. 2, we show the predicted boron-to-carbon ra-
tio, including the contribution from secondaries produced
and accelerated in SNRs, for a range of parameter val-
ues. In the upper frames, we set n−

gas = 2 cm−3 and
vary KB, while in the lower frames we set KB = 40 and
consider different values of n−

gas. In each frame, the solid
blue, dashed green, and dashed-dotted brown curves de-
note the parameter values which are incompatible with
the boron-to-carbon measurements at the 95%, 99% and
99.9% confidence levels, respectively. We also show in
each frame the result using a more extreme parameter
value, incompatible with the measured boron-to-carbon
ratio.

Previous authors have suggested that the observed
titanium-to-iron ratio and/or the positron fraction could
be explained for parameter values of n−

gas = 2 cm−3 and

The impact of this additional 	

secondary component is more 	

evident for high E, light nuclei:
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FIG. 1: The ratio of the secondary cosmic ray acceleration
term to the primary cosmic ray acceleration term in Eqs. 7
and 8, as a function of momentum per nucleon. The impact
of including the acceleration of secondary cosmic rays pro-
duced inside and around the supernova shock front is most
important at high energies and for lighter species. For 10B
the ratio is significantly higher since f−∞

10B
is suppressed. As

in Ref. [26], we have adopted optimistic values for KB , B,
n−
gas, v− and r (see text for more details).

Integrating the transport equation over infinitesimal
distance one gets [26]:

p
∂fi(x, p)

∂p
= −γfi(0, p)− γ(1 + r2)

Γ−
i (p)D

−
i (p)

(v−)2
fi(0, p)

+ γ[(1 + r2)
q−i (0, p)D−

i (p)

(v−)2
+ Yiδ(p− p0)].(7)

The solution to which yields:

fi(0, p) =

∫ p

0

dp′

p′

(

p′

p

)γ

e−γ(1+r2)(D−
i
(p)−D−

i
(p′))Γ−

i
(p)/(v−)2

× γ[(1 + r2)
q−i (0, p′)D−

i (p
′)

(v−)2
+ Yiδ(p

′
− p0)]. (8)

Following Refs. [25, 26], we assume Bohm diffusion for
CRs around the shock front:

D±
i (E) =

KB rL(E) c

3
= 3.3×1022KB B−1 E Z−1

i cm2 s−1,

(9)
where rL is the Larmor radius around the shock front,
B is the magnetic field in µG, Z the atomic number
of the CR nucleus i, and E is the energy in GeV. KB

is a “fudge factor” [26] which scales approximately as
KB ≃ (B/δB)2 [25], allowing for faster diffusion of CRs
around the shock front. Values of KB >> 1 have been
suggested [25, 26] under conditions where magnetic field
amplification is inefficient.

The importance of including the acceleration of sec-
ondary CRs produced inside and around the supernova
shock front varies with energy and CR species. In Fig. 1
we show the ratio of the secondary CR acceleration term
of Eqs. 7 and 8, (1+ r2)q−i (0, p)D

−
i (p)/(v

−)2, to the pri-
mary CR acceleration term, Yiδ(p − p0) = f−∞

i , as a

function of momentum per nucleon. This ratio increases
with energy and is greater for the lighter species. This
demonstrates that the acceleration of CR secondaries is
most important in the case of light nuclear species, and
at high energies. As in Ref. [26], we have adopted the fol-
lowing parameter values: KB = 40, B = 1 µG, n−

gas = 2
cm−3, v− = 0.5 × 108 cm3 s−1, and r = 4, which have
been suggested from the observed titanium-to-iron ratio,
and are also similar to those proposed from the positron
fraction (KB = 20 [25]).

We calculate the far up-stream phase space densities
from the measured CR densities for Fe, Si, Mg Ne, O, N,
C, B, He, and p [49, 50], taking into account the relative
isotopic abundances. For the calculation of the boron-to-
carbon ratio, we start from 18O and go down to 10Be.2

We employ the relevant total and partial cross sections
(see Refs. [51, 52]). We then use the same formulation to
calculate the antiproton-to-proton ratio, and the positron
fraction, including helium and proton CRs. We start
from the heaviest isotope and solve Eqs. 6 and 8 to obtain
the injected spectrum of CRs after integrating over the
volume of the SNR:

Ni(E) = 16π2

∫ v+τSN

0
dx p2f+

i (x, p) (v+τSN
− x)2.

(10)
We take τSN = 2× 104 yr and v+ = 1.25× 107 cm s−1.

Once CRs are injected into the ISM, they propagate
in the galactic medium. Depending on the CR species
and their energy scale, there are various possibly rele-
vant time-scales. The CR diffusion, the CR advection,
the diffusive re-acceleration time-scales, the decay time-
scale and the total energy losses time-scale. In addition,
as we stated earlier, CR secondaries are produced in the
interstellar medium. Depending on the aimed level of ac-
curacy and which are the important time-scales, one can
solve the propagation equation for CRs analytically, in-
cluding only diffusion and advection (see [53]), use a leaky
box approximation (as we do), or solve numerically in-
cluding all effects [54–56]. For CR protons, anti-protons,
Boron and Carbon and for the energies at hand, advec-
tion, re-acceleration and energy losses in the interstellar
medium are subdominant (for CR electrons and positrons
energy losses have to be included). These CRs diffuse
within a zone of scale height L ∼ 1 - 8 kpc [57, 58], be-
yond which they are free to escape. The escape timescale
for a CR nucleus i is τesci (E) ≃ τesc1 × (E/Z)−δ, where E
is in GeV, Z is the atomic number, and δ is the diffusion
index. The normalization, τesc1 , and the index, δ, can be
extracted by fitting the boron-to-carbon ratio at energies
below ∼ 30 GeV, where the effects of the acceleration of
secondaries inside SNRs are subdominant.

The density of CR nuclei at Earth (neglecting solar

2 10Be decays to 10B with a lifetime of 1.36 Myr.
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Thus a rise in other secondary/primary	

 CR ratios should be observed with AMS-02:



Including uncertainties in the background:
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Even after including background uncertainties, the current measurement of the 	

Boron to Carbon ratio, by AMS, severely constrains the acceleration of secondary	

 CRs inside supernova remnants.
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FIG. 3: The cosmic ray antiproton-to-proton ratio predicted for some of the same parameter choices used in Fig. 2. See text
for details.

curves in Fig. 2, which denote the prediction for the case
in which secondary particles are not further accelerated
in the shocks of SNRs, represent our “background”, with
respect to which we will later calculate our ∆χ2 in deriv-
ing upper limits on the acceleration of secondary CRs.

To derive limits on the stochastic acceleration of CR
secondaries in SNR shocks, we use the recently released
boron-to-carbon ratio data from PAMELA [48] and AMS

[49]. In each case, the boron-to-carbon ratio is fitted
to match the measurements below 30 GeV, where any
contribution from accelerated secondaries is insignificant.
In both the left and right frames, the dotted black curves
are in good agreement with the data at all energies from
PAMELA and AMS, yielding fits with a χ2 per degree-
of-freedom of 0.50 and 0.35, respectively9.

The most important parameters for our calculation are
the magnetic field B (which we take to be fixed at 1µG),
the shock compression ratio r (which we fix to r = 4), the

clude any advective winds, but allow for diffusive re-acceleration
with an Alfvén speed of 10 km s−1. For the parameter values,
δ = 0.43 and D0 = 2.95 × 1028 cm2s−1, we find an excellent fit
of χ2

≃ 9.9 over 27 degrees of freedom.
9 Including measurements from CREAM [63], CRN [64] and

TRACER [66], does not affect our results.

up-stream velocity v− (which we fix to v−=0.5×108 cm
s−1), the up-stream gas density n−

gas (which we allow to
vary), and the factor KB which is related to the efficiency
of diffusion around the shock (which we also allow to
vary). For the purposes of our calculations, KB and B
are degenerate quantities (see Eq. 9), thus we choose to
vary only KB. Also KB, B, n−

gas, v
− and r are connected

since they all appear in the secondary CR acceleration
term of Eqs. 7 and 8, (1 + r2)q−(0, p)iD

−
i (p)/(v

−)2 (see
also Eqs. 2, 5 and 6). For this reason, we also choose to
vary the value of n−

gas.

In Fig. 2, we show the predicted boron-to-carbon ra-
tio, including the contribution from secondaries produced
and accelerated in SNRs, for a range of parameter val-
ues. In the upper frames, we set n−

gas = 2 cm−3 and
vary KB, while in the lower frames we set KB = 40 and
consider different values of n−

gas. In each frame, the solid
blue, dashed green, and dashed-dotted brown curves de-
note the parameter values which are incompatible with
the boron-to-carbon measurements at the 95%, 99% and
99.9% confidence levels, respectively. We also show in
each frame the result using a more extreme parameter
value, incompatible with the measured boron-to-carbon
ratio.

Previous authors have suggested that the observed
titanium-to-iron ratio and/or the positron fraction could
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curves in Fig. 2, which denote the prediction for the case
in which secondary particles are not further accelerated
in the shocks of SNRs, represent our “background”, with
respect to which we will later calculate our ∆χ2 in deriv-
ing upper limits on the acceleration of secondary CRs.

To derive limits on the stochastic acceleration of CR
secondaries in SNR shocks, we use the recently released
boron-to-carbon ratio data from PAMELA [48] and AMS

[49]. In each case, the boron-to-carbon ratio is fitted
to match the measurements below 30 GeV, where any
contribution from accelerated secondaries is insignificant.
In both the left and right frames, the dotted black curves
are in good agreement with the data at all energies from
PAMELA and AMS, yielding fits with a χ2 per degree-
of-freedom of 0.50 and 0.35, respectively9.

The most important parameters for our calculation are
the magnetic field B (which we take to be fixed at 1µG),
the shock compression ratio r (which we fix to r = 4), the

clude any advective winds, but allow for diffusive re-acceleration
with an Alfvén speed of 10 km s−1. For the parameter values,
δ = 0.43 and D0 = 2.95 × 1028 cm2s−1, we find an excellent fit
of χ2

≃ 9.9 over 27 degrees of freedom.
9 Including measurements from CREAM [63], CRN [64] and

TRACER [66], does not affect our results.

up-stream velocity v− (which we fix to v−=0.5×108 cm
s−1), the up-stream gas density n−

gas (which we allow to
vary), and the factor KB which is related to the efficiency
of diffusion around the shock (which we also allow to
vary). For the purposes of our calculations, KB and B
are degenerate quantities (see Eq. 9), thus we choose to
vary only KB. Also KB, B, n−

gas, v
− and r are connected

since they all appear in the secondary CR acceleration
term of Eqs. 7 and 8, (1 + r2)q−(0, p)iD

−
i (p)/(v

−)2 (see
also Eqs. 2, 5 and 6). For this reason, we also choose to
vary the value of n−

gas.

In Fig. 2, we show the predicted boron-to-carbon ra-
tio, including the contribution from secondaries produced
and accelerated in SNRs, for a range of parameter val-
ues. In the upper frames, we set n−

gas = 2 cm−3 and
vary KB, while in the lower frames we set KB = 40 and
consider different values of n−

gas. In each frame, the solid
blue, dashed green, and dashed-dotted brown curves de-
note the parameter values which are incompatible with
the boron-to-carbon measurements at the 95%, 99% and
99.9% confidence levels, respectively. We also show in
each frame the result using a more extreme parameter
value, incompatible with the measured boron-to-carbon
ratio.

Previous authors have suggested that the observed
titanium-to-iron ratio and/or the positron fraction could

Antiprotons

Antiprotons background uncertainties are still large, 	

(mainly in the high energy production cross-section )
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FIG. 4: The cosmic ray positron fraction predicted for the parameter choices used in Figs. 2 and 3. The dotted black line denotes
the prediction from secondary positrons produced in the interstellar medium (see Eqs. 14 and 15), without any contribution
from positrons accelerated in the shocks of supernova remnants. In the left frame, we set n−

gas = 2 cm−3 and vary the value
of KB. In the right frame, we set KB = 40 and consider a range of values for n−

gas. In both frames, we take B = 1 µG, v−

= 0.5×10
8 cm s−1 and r = 4 up to the highest energies. We also take Emax = 10 TeV (see Fig. 5). Although the measured

positron fraction can be accommodated by a model with KB = 40 and n−
gas=2 cm−3, such a scenario is highly incompatible

with the measured boron-to-carbon ratio (and, to a lesser degree, with the antiproton-to-proton ratio). If we limit ourselves
to parameter choices that are compatible with boron-to-carbon at the 95% confidence level, we find that the acceleration of
secondary positrons in SNRs can account for only ∼25% of the excess positrons observed above 30 GeV.
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FIG. 5: The impact of varying the value of the maximum
energy to which e± are accelerated inside of supernova rem-
nants. See text for details.

The constraints presented in this paper could be mit-
igated to some extent if different CR species were to
originate from different sources. For example, one could
imagine a scenario in which the CR positrons were largely
produced (as accelerated secondaries) in a few nearby su-
pernova remnants (with high values of KB and/or n−

gas).

If the environments of those particular supernova rem-
nants contained exceptionally high ambient densities of
light nuclei (p, He), their relative contribution to the
spectrum of heavier CR nuclei producing boron could be
suppressed. The boron, carbon and heavier nuclei com-
position of the CR spectrum would thus be set by other,
more distant SNRs, perhaps less efficient in accelerating
secondaries. While one can debate the plausibility of such
a scenario, it is at least possible, in principle, to break the
connection between the predicted positron fraction and
boron-to-carbon ratio in this way. The connection be-
tween the positron fraction and the antiproton-to-proton
ratio, however, cannot be broken in such a manner. If the
AMS experiment does not detect a significant rise in the
high energy antiproton-to-proton ratio, that would likely
rule out any remaining possibility that the rising positron
fraction results from the acceleration of CR secondaries.
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Thus secondary CRs inside SNRs can NOT explain the positron fraction excess 
even for optimistic cases of energy losses inside the SNRs:
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