

- 1. Brief review of energy prices
- 2. Pollution chemistry basics
- 3. Basics of air quality permitting

On average.....

Heating a 2000 ft² Michigan home requires 85.3 million Btus each winter.

What's the annual heating bill?

Polysaccharides

- Corn cobs
- Corn stover
- Distillers' grain
- Leaves
- Grasses

- Sawdust
- Sugar beet pulp
- Cotton gin residue
- Bakery waste
- Waste paper

Species	g/kg wood		
Carbon Monoxide	80-370		
Methane	14-25		
VOCs (C2-C7)	7-27 0.6-5.4 0.1-0.7 0.02-0.1 0.1-0.3 0.01-1.7 0.03-0.6 0.2-1.6 1.6		
Aldehydes			
Formaldehyde			
Acrolein			
Propionaldehyde			
Butryaldehyde			
Acetaldehyde			
Furfural			

	Silicon	Calcium
	Sodium	Iron
	Potassium Phosphorus	Magnesium
~	They enter the ions, salts, and	plant as dissolved l acids in water.
\checkmark	They deposit in kernel, leaves,	n the cells of the corn and stalks.
\checkmark	Their concentr corn plant vari	ations depend on the ety and the soil type.

Emission factors for wood

Pollutant	Emission Factor
particulate matter	0.4
oxides of nitrogen (NOx)	0.49
sulfur dioxide (SO ₂)	0.025
carbon monoxide (CO)	0.6
volatile organic carbon (VOC)	0.017

Emission factor changes with fuel type

Source: Environmental Protection Agency, Section 1.6 of AP-42.

Finding C in the table								
	$H_B = 10 ft$			$H_B = 20$ ft				
Distance Z (ft)	H _s = 12.5 ft	H _s = 17.5 ft	H _s = 25 ft	H _s = 25 ft	H _s = 35 ft	H _s = 50 ft	Table 2. Annual Ambient Impact Ratios	
25	0.0085	0.022	0.159	0.032	0.084	0.679	(R) in units of (lb/hr) /	
50	0.0087	0.022	0.159	0.032	0.084	0.679	(micrograms/m ³).	
75	0.0096	0.022	0.159	0.032	0.084	0.679	ll heightef	
100	0.011	0.023	0.159	0.033	0.084	0.679	H _B = neight of	
200	0.020	0.040	0.159	0.042	0.084	0.679	heighbol s building,	
300	0.030	0.053	0.178	0.059	0.113	0.679	H _a = exhaust stack	
400	0.040	0.065	0.171	0.077	0.140	0.679	height.	
500	0.051	0.077	0.189	0.094	0.164	0.679	-	
600	0.063	0.091	0.222	0.112	0.188	0.746	Source: Michigan	
700	0.075	0.104	0.241	0.130	0.211	0.812	Department of Environmental Quality Report: Air Pollution Control Rules, Bort 2. Air Llop	
800	0.089	0.119	0.257	0.148	0.235	0.768		
900	0.103	0.134	0.264	0.167	0.258	0.770		
1000	0.119	0.151	0.272	0.187	0.282	0.800		
1500	0.209	0.245	0.318	0.290	0.406	1.080	Approval As Amended	
2000	0.311	0.350	0.383	0.408	0.539	1.256		

$$A = \frac{B}{C} = \text{Ambient Impact}$$

$$A = \underbrace{\frac{B}{C}}_{\text{B}} = 0.4$$

$$A = \underbrace{\frac{B}{Design}}_{\text{Design}} \underbrace{Factor}_{C = 0.011}$$
Answer = 36.4 micrograms per cubic meter

EPA Safe Limits				
Pollutant	Maximum Permissible Concentration			
PM ₁₀ (annual)	50 μg/m ³			
PM ₁₀ (24 hr)	150 μg/m ³			
PM _{2.5} (annual)	15 μg/m ³			
PM _{2.5} (24 hr)	65 µg/m ³			
NO ₂ (annual)	100 µg/m ³			
SO ₂ (annual)	80 μg/m ³			
SO ₂ (24 hr)	365 μg/m ³			
CO (8 hr)	10 μg/m ³			

Source: National Ambient Air Quality Standards for Wood, Michigan 2005 Annual Air Quality Report, August 2006.

Т	he	ans	wei	r is	buri	ed	in the table
	$H_B = 10$ ft			$\boldsymbol{H}_{B}=20~ft$			
Distanc e Z (ft)	H _s = 12.5 ft	H _s = 17.5 ft	H _s = 25 ft	H _s = 25 ft	H _s = 35 ft	H _s = 50 ft	Table 2. Annual Ambient Impact Ratios (R) in units of (lb/hr) /
25	0.0085	0.022	0.159	0.032	0.084	0.679	(micrograms/m ³).
50	0.0087	0.022	0.159	0.032	0.084	0.679	
75	0.0096	0.022	0.159	0.032	0.084	0.679	H _B = height of
100	0.011	0.023	0.159	0.033	0.084	0.679	neighbor's building,
200	0.020	0.040	0.159	0.042	0.084	0.679	H – exhaust stack
300	0.030	0.053	0.178	0.059	0.113	0.679	height
400	0.040	0.065	0.171	0.077	0.140	0.679	noight
500	0.051	0.077	0.189	0.094	0.164	0.679	Source: Michigan Department of Environmental Quality Report: Air Pollution
600	0.063	0.091	0.222	0.112	0.188	0.746	
700	0.075	0.104	0.241	0.130	0.211	0.812	
800	0.089	0.119	0.257	0.148	0.235	0.768	
900	0.103	0.134	0.264	0.167	0.258	0.770	Control Rules,
1000	0.119	0.151	0.272	0.187	0.282	0.800	Part 2. Air Use
1500	0.209	0.245	0.318	0.290	0.406	1.080	Iuly 1 2003
2000	0.311	0.350	0.383	0.408	0.539	1.256	July 1, 2003.

