

Calculation of Solar Panle Area Required to Meet 2002 US Electrical Energy Consumption

Annual electrical energy required =	1.25E+19 Joules / yr
=	3.47E+12 kW hr / yr
Average POWER of full sun at solar panel =	1,000 W / m ²
=	1.0 kW / m ²
Average capacity factor	20%
Hours per year	8,760 hours / yr
Average solar ENERGY available to solar panel =	1752 kW hr / m² / yr
=	4.8 kW hr / m ² / day
Estimated average PV total system efficiency =	10%
Estimated average system losses =	15%
Estimated electrical energy output =	148.92 kW hr / m ² / yr
=	0.408 kW hr / m² / day
Area required	2.33E+10 m ²
Area required	2.51E+11 ft ²
Area required	5,761,310 acres
Area required	9,002 miles ²
	~ Vermont
Link to Spreadsheet	

Other Sources:

Hydro Power

Geothermal Energy

Ocean Thermal

Ocean Currents

Tidal Energy

Wave Energy

Height	Wind Speed	Method
30 m	3.0 m/s	measured
40 m	3.6 m/s	measured
50 m	4.1 m/s	measured
′5 m	5.2 m/s	calculated
80 m	5.4 m/s	calculated
100 m	6.2 m/s	calculated

- Campus growth & future needs
- Wood boilers
- Proposed sites
- Costs & savings

We looked at 14 counties in SE Michigan & found 1.7 million tons of urban waste wood per year

Other campuses heat with wood

 Central Michigan University
Northern Michigan University is developing a plant

Next we look at the future needs for campus:

- 1. Replace aging boilers
- 2. More capacity for future growth

Unit	Capacity (MMBTU/hr)	Year Installed	Age in years / Condition	
B-1	100	1969	39 / good	
B-2	100	1969	39 / good	
B-3	34	1959	49 / fair	
B-4	32	1957	51 / marginal	
Total	265			

	Existing Fossil Fuel Mix		Proposed Renewable Energy	
	Thermal (Heating)	Electrical	Thermal (Heating)	Electrical
Central Heating Plant (natural gas)	100%		20%	
Detroit Edison		95%		20%
Diesel Generators		5%		10%
Biomass Boiler Plant			80%	50%
Wind Power				20%
Totals	100%	100%	100%	100%

