

Wind Power

Jim Leidel Oakland University April 2008

Oakland Wind Data Results

• Wind Speed Study Results (Meteorological Tower Data Compilation and Analysis)

Feasibility Study Results

Oakland Wind Data Results

<u>Height</u>	Wind Speed	Method
30 m	3.0 m/s	measured
40 m	3.6 m/s	measured
50 m	4.1 m/s	measured
75 m	5.2 m/s	calculated
80 m	5.4 m/s	calculated
100 m	6.2 m/s	calculated

Wind Speed Frequency Distribution at 50 Meters (percent time for each wind speed)

(artist's rendering: courtesy of Khales Dahr & Jim Leidel. This is not the actual, proposed location.)

AAER Wind Turbine

1,500 kW each

77 meter blade diameter

100 meter tower

Illustration of turbine components

One 1.5MW Wind Turbine Installed at Site #1

AAER 100m Tower at Location 1			3,500,000	
Subtotal		\$	3,500,000	
Owner Conti	ngency	\$	210,000	6%
Total Installed Cost		\$	3,710,000	
	Cost per MW Installed	\$	2,473	

Two 1.5MW Turbines Ins	talled at	Sites #1 a	<u>ind #2</u>
AAER 100m Tower at Loca	ition 1 \$	3,500,000	
AAER 100m Tower at Loca	tion 2 \$	3,500,000	
Two Turbine Crane Econo	my \$	(100,000)	
Subtotal	\$	6,900,000	
Owner Contingency		414,000	6%
Total Installed Cost	\$	7,314,000	
Cost per MW Ins	stalled \$	2,438	

Net Annual and Cumulative Cash Flow Over 25 Year Project (construction in 2009, beginning operation in 2010)

Projected Unit Cost of Electricity Over 25 Year Project

Overview of an Integrated, Renewable Energy Supply Infrastructure

Overview of an Integrated Renewable Energy Supply Infrastructure

	Existing Fossil Fuel Mix		Proposed Renewable Energy	
	Thermal (Heating)	Electrical	Thermal (Heating)	Electrical
Central Heating Plant (natural gas)	100%		20%	
Detroit Edison		95%		20%
Diesel Generators		5%		10%
Biomass Boiler Plant			80%	50%
Wind Power				20%
Totals	100%	100%	100%	100%

Proposed Funding Sources

- **1. Sale of Renewable Energy Credits**
- 2. \$1.5M Clean Renewable Energy Bond
- 3. Investigate grant opportunities
- 4. Leveraged lease
- 5. Issue 15 to 20 year bonds
- 6. Enter into one or more bank qualified debt arrangements
- 7. Public / private partnership arrangement

Recommendations

- 1. Select the project financing method
 - a. Issue 15 to 20 year bonds
 - b. Enter into bank qualified debt arrangements
 - c. Combine with biomass project 3rd party "owned & operated"
- 2. Hire a design/build firm
 - a. Create high resolution wind map of campus
 - **b.** Detailed engineering and construction documents
 - c. Environmental study & any needed approvals
- 3. Establish a utility interconnect agreement with DTE
- 4. Offering of REC's should be made to interested parties to solicit pricing and potential customers interested in a bilateral contract.
- 5. Enter into Call Contracts Against the Euro or Canadian Dollar

Wind Power

A Sustainable Energy Option for the Future of Oakland University

