BIOMASS PYROLYSIS

by Fred L. Jones Cogen Designs, Inc.

Waste Disposal Options

CDI

#Landfilling #Incineration Mass Burn Refuse Derived Fuel (RDF) **#Gasification #Pyrolysis** High Temperature Low Temperature

Pyrolysis

LTMP Renewable Fuels Process

Fuel Upgrading

©CDI 2000

Waste to BDF

Shredded Waste

Biomass-Derived Fuel

Why Displace Coal?

Burning Biomass-Derived Fuel

CDI

Sulfur Content lower than natural coals 7 SO2 Emissions, Ib SO2/MMBtu 6 3 BDF **Powder River Basin** Illinois Basin **ND Lignite** Coal

LTMP Pyrolysis Process

CDI

Based on low temperature twin screw extruder/mixer technology

➢ Forty years of experience in similar applications, over 1,200 commercial extruder/mixer units in service.

Mixer produces highly consistent product quality

Process can operate on a wide variety of organic waste materials

Feedstock Range

Pyrolysis Reactor

8 Tons/hr Capacity

Internal Augers

CDI

~25 Tons/hr Capacity

BDF Production Process

Pyrolysis at Work

Large Capacity Machines

CDI

Similar Unit --Designed for cellulose Vertical vs horizontal 35" Diameter Augers 100 tph vs 8 tph

Similar Unit --Designed for Kevlar Horizontal Configuration 31" Diameter Augers 75 tph vs 8 tph

Unique Reactor Properties

- % No incineration, combustion or burning
 % No air or oxygen added
 % No flame
 - **% No external heat addition**
- **% No circulating solids**

- **%550°F max. operating temperature**
- Single step to end product no refining needed

Dioxin Formation

900 6 hr Reaction Time High Excess Air 800 **Activated Carbon Added** 700 CDF 600 Formation, ng/g 500 400 300 **LTMP Process** 90 sec 200 **Reaction Time** CDD No O₂ available 100 0 400 500 600 700 800 900 Reaction Temperature, °F

Sources: USEPA, Addnik, et. al (1991)

Incineration vs. LTMP

CDI

200 Tpd Incinerator 200 Tpd LTMP Reactor ~

Incineration vs Pyrolysis

CDI

Detroit Incinerator, Michigan

LTMP Pyrolysis, Illinois

Waste Quantity — 3,200 UST/d* Waste Moisture — 18% Net Power Generation — 65 MW Generating Efficiency — 16.9% Waste Quantity — 1,232 UST/d* Waste Moisture — 24% Power from Syncoal — 35 MW Generating Efficiency — 19.2%

*7 day/wk average

RDF Preparation

Pyrolysis Area

Pyrolysis Area - High Moisture

Incineration vs Pyrolysis

Kajang Incinerator, Malaysia*

CDI

LTMP Pyrolysis, Santiago

Waste Quantity — 1,100 UST/d Waste Moisture — 56% Net Power Generation — 5 MW Generating Efficiency — 6.4% Waste Quantity — 1,500 UST/d Waste Moisture — 54% Power from Syncoal — 25 MW Generating Efficiency — 19.2%

*Renewable Project of the Year 2010 -- "Power Magazine"

Process Comparisons

Process Comparisons

CDI

0 500 1,000 1,500 2,000 2,500 Energy Requirements, kWh/ton MSW Shaw SlurryCarb Plasma Arc LTMP

Process Comparisons

CDI

0 2,000 4,000 6,000 8,000 10,000 Product Heating Value, Btu/lb Plasma Arc Gasification Thermoselect SlurryCarb

Net Energy Production

ODI

	Net Electric/ Fuel Output	1,000 TPD 100% Availability
Thermal Gasification Pyrolysis Plasma Arc	400 kWh/ton 450 kWh/ton 400 kWh/ton	16 MWe 19 MWe 16 MWe
Anaerobic Digestion	125 kWh/ton	5 MWe
Acid Hydrolysis	31 gal EtOH/ton (260 kWh/ton)	11 mm gal/yr (11 MWe)
LTMP Carbonization	0.38 ton BDF/ton (785 kWh/ton)	137,000 tpy BDF (33 MWe)

Comparative Emissions

*minor source

Sources of Greenhouse Gases

Greenhouse Gas Reduction

LTMP Plant vs Forest Land

CO₂ Reduced* 1.5 million Tons/yr 12 Tons/yr

*All Greenhouse gases, as CO₂

CDI

Source: MI United Conservation Club

Dioxin Emission Factors

CDI

USEPA Dioxin Reassessment 1E3 Emission factor, ng TEQ/kg Incinerators 1E2 Smelters 1E1 Utility Boilers 1E0 Kilns 1E-1 1E-2 Haz. Waste Med Waste Coal Iron MSW Aluminum Wood Copper

Emission Source

Lead

Cement Kiln

Oil

WWTP Sludge

Environmental Impact

CDI

Source: Technical University of Denmark, Nov. 2007

*Includes impact of BDF Use

Recycling Performance

Recycling Goals

CDI

Comparison with LTMP Process 100 % LTMP **Process** 80% NY 60% ME WA CA,HI,IN,IA,NM,OR SD DC MOAR,ND,NY,VT 40% TX FL MN SC

WV

Feed Coal Samples

PRB Coal

BDF (Syncoal)

Bit. Coal Mix

Coal Analyses

CDI

Proximate VM, % H ₂ O, %	<u>BDF</u> 53.14% 1.82%	<u>PRB Coal</u> 30.04% 30.47%	<u>Bit Blend</u> 29.46% 11.49%
Ultimate			
<u> </u>	57.49%	49.52%	67.88%
H, %	5.67%	3.39%	4.26%
O, %	11.41%	11.31%	6.27%
N, %	1.06%	0.71%	1.29%
S, %	0.29%	0.23%	1.75%
HHV, Btu/lb	10,236	8,264	11,628
Hg, ug/g	0.04	0.07	0.134
Lb CO2/MMBtu	205.8	219.6	213.9
Stack Losses,%*	12.8%	14.7%	11.3%
Comb. Eff'y,%*	87.2%	85.3%	88.7%

*15% XS Air, 350°F Stack Temperature

Coal Mercury Content

Thermogravimetric Analysis

Furnace Views

CDI

PRB Coal

BDF (Syncoal)

TES Coal Mix

Carbon Burnout

Bit. Coal Ash

Emission Reductions

CDI

120% 67% 92% Normalized Emission Rate 15% 100% 9.4% 80% 56% 60% 40% Unmeasurable 54% 20% **0%** Hg **SO**2 NH3 CH4 **CO**2 NOx

Pollutant

BDF

PRB

Bit

Stack H₂O Content

Boiler Efficiency

Power Generation

CO₂ Emissions

Grindability

80/20 Coal/BDF blend Grindability comparable to Western coals Pulverizer stays clean No sample compaction

Moisture Pickup

BDF/Biomass Comparison

CDI		
	Wood Pellets	<u>BDF</u>
Rail Transportation	Closed hopper only	Same as coal
Fuel Unloading	Bottom dump only – no rotary	Same as coal
Fuel Storage	Enclosed storage only	Same as coal
Moisture Pickup	Serious – becomes mush	Same as coal
Dust Generation	Very dusty – explosion potential	Same as coal
Grindability	Poor 1 - 3 mm	Same as coal 0.075 mm
Mill Clearing Cycle	60+ minutes	Same as coal 5-10 minutes
Primary Air Flow	Much higher – must be cold air	Same as coal

BDF/Biomass Comparison

	Wood Pellets	BDF
Steam conditions	Decreased superheat, reheat temperatures	Same as coal
CI Corrosion	Serious - may require doping with sulfur	Same as coal
Plant Capacity	17% Derating	Same as coal
Plant Heat Rate	4% Efficiency Loss	2% Efficiency Gain
CO ₂ Emissions	8% Increase	15% Reduction
SO ₂ Emissions	Reduction	50-93% Reduction
Hg Emissions	50% Reduction	55-70% Reduction
Heat Value	8,297 Btu/lb	10,400 Btu/lb

BDF Ash Analyses

0.16%

CDI

BaO

Ash Minerals		Trace Element	<u>s (TCLP) Sample</u>	QL	<u>Reg. Limit</u>
SiO ₂	39.31%	As, mg/L	BQL*	0.20	5.0
AI2O 3	12.35%	Ba	BQL	5.00	100.0
Fe2O3	4.87%	Cd	BQL	0.10	1.0
CaO	22.66%	Cr	BQL	0.10	5.0
MgO	2.46%	Pb	0.47	0.10	5.0
TiO ₂	2.08%	Hg	BQL	0.000	57 0.2
K2O	2.02%	Se	BQL	0.20	1.0
Na ₂ O	5.23%	Ag	BQL	0.10	5.0
SO 3	2.60%	-	-		
MnO2	0.20%	*Below Quantitative Limit			
P 2 O 5	1.71%				
Sr0	0.05%				

Bio-oil Boiler Fuel

CDI

Vents 2/3 - Bio-Oil

Oil Characteristics

	MeOH	FtOH	Bio-Oil	Biodiesel	No 2	No 6
С	37.48%	52.14%	60.84%	76.14%	87.18%	85.60%
Н	12.58%	13.13%	8.76%	11.25%	12.50%	9.70%
0	49.93%	34.73%	29.20%	12.10%		1.80%
Ν			0.58%	0.20%	0.02%	0.10%
S			0.18%	0.20%	0.30%	2.30%
Ash			0.06%			0.50%
Btu/lb (HHV)	9,750	12,800	12,026	16,095	19,430	18,300
Btu/gal	64,250	84,100	112,202	118,300	140,090	143,655
SpGr, lb/gal	6.63	6.61	9.33	7.35	7.21	7.85
Visc @ 60°F	0.59	1.19	5.09	7.50	3.30	450

Chloride Content

CDI

1.0% **HHV-Adjusted** 0.8% Chloride, % 6.0 7% 0.2% 0.0% III Coal **Rice Straw** BDF Alfalfa **Corn Stover** Fuel

Source: "Chloride Issues with Biomass Co-firing in PC Boilers," Duong & Tillman

Syncoal Production Cost

CDI

Stand-Alone Plant

MSW as a **Renewable Resource**

CDI

On August 18, 2009 the Massachusetts Department of Energy Resources (DOER) announced that **only waste-based biofuels will qualify toward fulfilling its biofuel requirements** "until further notice." The announcement ... excludes using other renewable and sustainable biomass feedstocks, such as agricultural crop residues and algae.

MSW/BDF as a Renewable Resource

Overwhelmingly agricultural biomass

- **#** Continuously produced little seasonality
- **%** No diversion of existing crop lands required
- **#** Produced at energy use centers low transport costs
- Collection ("harvesting"), distribution systems already in place
- BDF makes MSW/biofuels compatible with existing energy technologies
- **#** BDF burns cleaner than the fossil fuel it displaces
- **#** BDF process offers huge GHG benefits

Before/After

Completed Project Site

