

Technology: Close-coupled Gasification Feedstocks: Over 2,000 types of solid fuels Output: Thermal Gas, Steam, Hot Water Size Range: 3-300 mmBTU Commercial Status: Incorporated 1967, 350 employees Projects Installed: >1,000 Target Market: Industrial, Institutional, HVAC Competitors: Messersmith, Chiptech, AFS







- •System Application Analysis
- •Fuel Analysis
- Emission Permitting
- Power Purchase Agreement
- Incentives
- •ROI Analysis

# **DUE DILIGENCE!!!!!**



|                                                                                                         |                                                                                                                                                                                        | STEAM                                                                                                                                                | PLANT DAT                                                                                                  | A SHEET                                                                                 |                                     |                       |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|-----------------------|
| Number of                                                                                               | boilers:<br>steam or hot wate                                                                                                                                                          | Number norma                                                                                                                                         | ally on line:                                                                                              | DATA<br>Current los                                                                     | ad:                                 |                       |
|                                                                                                         | Rating:<br>BHP or lbs/hr                                                                                                                                                               | Operating %<br>of Rating                                                                                                                             | Operating<br>Pressure                                                                                      | Type:<br>Water or Fire<br>Tube                                                          | Mfg.                                | Hrs. On<br>Line / Day |
| Boiler #1                                                                                               |                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                            | Tube                                                                                    |                                     |                       |
| Boiler #2                                                                                               |                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                            |                                                                                         |                                     |                       |
| Boiler #3                                                                                               |                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                            |                                                                                         |                                     |                       |
| What is the                                                                                             | perate da<br>n consumption (lb<br>e plant's operating<br>Natural Gas                                                                                                                   | s/hr): Peak                                                                                                                                          | hours/day,                                                                                                 | r.<br>verage<br>days/week<br>Biomass Other                                              | _, Minimum<br>, wee<br>Please list: | ks/year.              |
| If ut<br>Please indi<br>Do you and<br>Please exp<br>SECTION I<br>Is low value<br>How much<br>Please des | Ilizing multiple fou<br>cate TOTAL fuel<br>ticipate any majo<br>lain:<br>If you hav<br>I LOW VALUE<br>e or surplus biorm<br>waste fuel is avai<br>of this amount is<br>cribe the fuel: | els, please indici<br>consumption.<br>or changes in s<br>ve waste biomas<br>OR SURPLUS<br>ass fuel available<br>ass fuel available<br>over and above | ate approx. rat<br>team consum<br>as fuel, please<br>BIOMASS FU<br>e or produced<br>Tons<br>what is currer | ? Yes No<br>per<br>tly being utilized?                                                  | ] No<br>section.                    | per                   |
| If this fuel is                                                                                         | s sold, what is its                                                                                                                                                                    | value? \$                                                                                                                                            | per to                                                                                                     | ent (wet basis) of w<br>n.<br>s paid? \$                                                |                                     | % M.C.                |
|                                                                                                         |                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                            | otential, please com                                                                    |                                     |                       |
| Voltage:<br>Average de<br>Name of loo<br>Electric bill<br>Average co                                    | Hertz:<br>emand during non<br>cal utility:<br>is \$<br>st per KWH is \$0                                                                                                               | Peak dem<br>-operating hours<br>per<br>per KWH                                                                                                       | and:                                                                                                       | y of a recent, typica<br>KW Average de<br>KW<br>month/year)<br>st per KW (demand<br>KWH | emand:                              | KW                    |
| Page 1 of 1                                                                                             |                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                            |                                                                                         | <b>J</b>                            |                       |



#### MATERIAL Distillers Grain

LABORATORY NO. 429,528

| PER POUND BASIS | AS ANALYZED | DRY BASIS | ASH & MOISTURE<br>FREE | AS RECEIVED |
|-----------------|-------------|-----------|------------------------|-------------|
| MOISTURE        | 10.94       | 0.00      | 0.00                   | 10.94       |
| VOLATILE        | 74.44       | 83.58     | 86.96                  | 74.44       |
| FIXED CARBON    | 11.16       | 12.53     | 13.04                  | 11.16       |
| ASH             | 3.46        | 3.89      | 0.00                   | 3.46        |
| SULFUR          | 0.66        | 0.74      | 0.77                   | 0.66        |
| BTU             | 8,425       | 9,460     | 9,843                  | 8,425       |



The New Federal MACT Rules

<10 mmBTU input Regulated locally, requires basic mechanical particulate collection and intermittent system tuning and reporting

>10 mmBTU - <30 mmBTU input Federally regulated, Maximum particulate emission of 0.07 lb/mmBTU input

>30 mmBTU input Federally regulated, Maximum particulate emission of 0.03-0.025 Ibs/mmBTU input



If the project survives the evaluation of incentive opportunities and the final ROI analysis of the project.....it's time to get to work.





| ST Paper                                                                                                                                                                                                               |                                                                                                                                                                                   |                                   |                                                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                        | Oconto Falls, Wisconsin                                                                                                                                                           |                                   |                                                                                          |  |  |
| Role of Firm<br>Project Owner<br>Duration of Project<br>Project Cost<br>Project Cost<br>Project Financing<br>Performance Results<br>Project Description: 1<br>of their paper byproducts v<br>steam plant to burn exces | Design & build project,<br>ST Group<br>Mark Burgess 1-920-84<br>Spring 2007 – fall 2008<br>n/a<br>n/a<br>ha Plant was operating<br>vere becoming very cos<br>s paper sludge & Woo |                                   | boilers. Also the disposal<br>fill costs, Hurst designed a<br>verhead cost. With this in |  |  |
|                                                                                                                                                                                                                        | The system utilizes a "state of the art" control system that will allow the boiler to automatically feed, fire and<br>de-ash, without the operator ever leaving the control room. |                                   |                                                                                          |  |  |
| The following components                                                                                                                                                                                               | The following components were provided:                                                                                                                                           |                                   |                                                                                          |  |  |
| <ul> <li>50,000 Lb/Hr Deaerate</li> <li>2-6 Section walking fit</li> <li>Dry Electrostatic Preci</li> <li>Hurst Biomaster control</li> <li>2 water cooled Ignition</li> </ul>                                          | ith Reciprocating grate<br>or system with 2 pumps<br>oor system. 3 sections 1<br>prortator<br>ol system                                                                           | or sludge, 3 sections for constru | uction debris                                                                            |  |  |
|                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                   |                                                                                          |  |  |
|                                                                                                                                                                                                                        |                                                                                                                                                                                   | DILER 1                           |                                                                                          |  |  |
| Provided by Gene Zebley                                                                                                                                                                                                | (229) 346-3972                                                                                                                                                                    | (229) 319-1885                    | gzebley@hurstboiler.com                                                                  |  |  |
|                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                   |                                                                                          |  |  |

#### www.oakland.edu/cerc



#### Moose River Lumber Co Moose River, Maine Role of Firm Design & build projects, boilers & turbine equipment Project Owner Moose River Lumber Co. **Project Reference** Charlie Lumbert, Owner (207) 668-4193 Duration of Project The boiler was sold summer of 2007 & commissioned spring of 2008 **Project Cost** n/a Wet (50% MC) woody biomass Fuel Performance Results As specified. Project Description Moose River is a large saw mill that was operating a fuel oil boiler while generating tons of waste wood, until the company noticed the potential payback of a biomass system. In the summer of 2007, Moose River purchased a new biomass boiler to displace around 500.000 gallons of fuel annually. The return on this investment is expected to be less than three years. This is what caught the eye of Moose River's owner, Charlie Lumbert. The following components were provided: S 600 bhp, 450 psi design pressure biomass fired steam boiler · Gasification unit with automatic deashing reciprocating grate stoker · Multi-cyclone fly-ash arrestor 25.000 lb/hr deaerator system with four (4) pumps Hurst BioMaster control system (UL Listed) · Turbine & associated equipment will be provided by Thermal Systems, Inc. · Six (6) section walking floor system with screener & conveyor · Sire work included installation supervision of the equipment listed above Provided by Gene Zebley • Cell (229) 391-1885 • Office (229) 346-3972

#### School of Engineering & Computer Science – Clean Energy Research Center

#### www.oakland.edu/cerc



#### Hanes Wear

Dos Rios, Dominican Republic

| Role of Firm        | Design & build projects, boilers, fuel storage system & emissions equipment |
|---------------------|-----------------------------------------------------------------------------|
| Project Owner       | Intrinergy                                                                  |
| Project Reference   | Dale Coy (336) 519-2581                                                     |
| Duration of Project | Jan 2008 – Feb 2009 Start- up                                               |
| Project Cost        | n/a                                                                         |
| Fuel                | Mixed woody biomass, rice hulls, RFD                                        |
| Performance Results | As specified.                                                               |

#### Project Description

Hurst updated the steam plant from existing natural gas boilers to biomass boilers that fire rice hulls. This system provides combined heat & power to the facility. The system utilizes a "state of the art" control system that will allow the boiler to automatically feed, fire and de-ash, without the operator ever leaving the control room.

The following components were provided:

- · Two (2) 1200 bhp, 450 PSI design pressure biomass fired steam boilers
- · Gasification unit with flaking grate stoker
- · Heavy duty ash conveyor with a common ash discharge conveyor
- 80,000 Lb/Hr deaerator system with 4 pumps
- Two (2) 6 section walking floor systems with oversize screener & conveyors
- Power generation equipment (provided by end user)
- · Multi cyclone Fly ash Arrestors as primary pollution equipment
- Hurst BioMaster Control System (UL Listed)
- Feedwater Economizers
- Superheated steam
- · Extended waterwalls for dry fuel combustion
- · Site work included installation supervision of the above listed equipment





In conclusion, successful biomass energy projects do exist. It requires hard work, good engineering and very good communications. If all the parts come together then this could be the result......



School of Engineering & Computer Science – Clean Energy Research Center

www.oakland.edu/cerc